3D_IOU 计算
#! /usr/bin/env python
# -*- coding: utf-8 -*-#
# 3D IoU caculate code for 3D object detection
# Kent 2018/12
import numpy as np
from scipy.spatial import ConvexHull
from numpy import *
def polygon_clip(subjectPolygon, clipPolygon):
""" Clip a polygon with another polygon.
Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python
Args:
subjectPolygon: a list of (x,y) 2d points, any polygon.
clipPolygon: a list of (x,y) 2d points, has to be *convex*
Note:
**points have to be counter-clockwise ordered**
Return:
a list of (x,y) vertex point for the intersection polygon.
"""
def inside(p):
return (cp2[0] - cp1[0]) * (p[1] - cp1[1]) > (cp2[1] - cp1[1]) * (p[0] - cp1[0])
def computeIntersection():
dc = [cp1[0] - cp2[0], cp1[1] - cp2[1]]
dp = [s[0] - e[0], s[1] - e[1]]
n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0]
n2 = s[0] * e[1] - s[1] * e[0]
n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0])
return [(n1 * dp[0] - n2 * dc[0]) * n3, (n1 * dp[1] - n2 * dc[1]) * n3]
outputList = subjectPolygon
cp1 = clipPolygon[-1]
for clipVertex in clipPolygon:
cp2 = clipVertex
inputList = outputList
outputList = []
s = inputList[-1]
for subjectVertex in inputList:
e = subjectVertex
if inside(e):
if not inside(s):
outputList.append(computeIntersection())
outputList.append(e)
elif inside(s):
outputList.append(computeIntersection())
s = e
cp1 = cp2
if len(outputList) == 0:
return None
return outputList
def poly_area(x, y):
""" Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """
return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
def convex_hull_intersection(p1, p2):
""" Compute area of two convex hull's intersection area.
p1,p2 are a list of (x,y) tuples of hull vertices.
return a list of (x,y) for the intersection and its volume
"""
inter_p = polygon_clip(p1, p2)
if inter_p is not None:
hull_inter = ConvexHull(inter_p)
return inter_p, hull_inter.volume
else:
return None, 0.0
def box3d_vol(corners):
"""
corners: (8,3) no assumption on axis direction
"""
a = np.sqrt(np.sum((corners[0, :] - corners[1, :]) ** 2))
b = np.sqrt(np.sum((corners[1, :] - corners[2, :]) ** 2))
c = np.sqrt(np.sum((corners[0, :] - corners[4, :]) ** 2))
return a * b * c
def is_clockwise(p):
x = p[:, 0]
y = p[:, 1]
return np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)) > 0
def box3d_iou(corners1, corners2):
""" Compute 3D bounding box IoU.
Input:
corners1: numpy array (8,3), assume up direction is negative Y
corners2: numpy array (8,3), assume up direction is negative Y
Output:
iou: 3D bounding box IoU
iou_2d: bird's eye view 2D bounding box IoU
todo (kent): add more description on corner points' orders.
"""
# corner points are in counter clockwise order
rect1 = [(corners1[i, 0], corners1[i, 2]) for i in range(3, -1, -1)]
rect2 = [(corners2[i, 0], corners2[i, 2]) for i in range(3, -1, -1)]
area1 = poly_area(np.array(rect1)[:, 0], np.array(rect1)[:, 1])
area2 = poly_area(np.array(rect2)[:, 0], np.array(rect2)[:, 1])
inter, inter_area = convex_hull_intersection(rect1, rect2)
iou_2d = inter_area / (area1 + area2 - inter_area)
ymax = min(corners1[0, 1], corners2[0, 1])
ymin = max(corners1[4, 1], corners2[4, 1])
inter_vol = inter_area * max(0.0, ymax - ymin)
vol1 = box3d_vol(corners1)
vol2 = box3d_vol(corners2)
iou = inter_vol / (vol1 + vol2 - inter_vol)
return iou, iou_2d
# ----------------------------------
# Helper functions for evaluation
# ----------------------------------
def get_3d_box(box_size, heading_angle, center):
""" Calculate 3D bounding box corners from its parameterization.
Input:
box_size: tuple of (length,wide,height)
heading_angle: rad scalar, clockwise from pos x axis
center: tuple of (x,y,z)
Output:
corners_3d: numpy array of shape (8,3) for 3D box cornders
"""
def roty(t):
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
R = roty(heading_angle)
l, w, h = box_size
x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
y_corners = [h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2]
z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
corners_3d[0, :] = corners_3d[0, :] + center[0]
corners_3d[1, :] = corners_3d[1, :] + center[1]
corners_3d[2, :] = corners_3d[2, :] + center[2]
corners_3d = np.transpose(corners_3d)
return corners_3d
if __name__ == '__main__':
print('------------------')
# get_3d_box(box_size, heading_angle, center)
corners_3d_ground = get_3d_box((1.497255, 1.644981, 3.628938), -1.531692, (2.882992, 1.698800, 20.785644))
corners_3d_predict = get_3d_box((1.458242, 1.604773, 3.707947), -1.549553, (2.756923, 1.661275, 20.943280))
(IOU_3d, IOU_2d) = box3d_iou(corners_3d_predict, corners_3d_ground)
print(IOU_3d, IOU_2d) # 3d IoU/ 2d IoU of BEV(bird eye's view)
不论你在什么时候开始,重要的是开始之后就不要停止。
不论你在什么时候结束,重要的是结束之后就不要悔恨。