由先序和中序遍历唯一还原一颗二叉树

引入大神:https://www.cnblogs.com/xinchrome/p/4905608.html  因为我不是去确定后序遍历的就没写算法二

 

现在有一个问题,已知二叉树的前序遍历和中序遍历:
PreOrder:         GDAFEMHZ
InOrder:            ADEFGHMZ
我们如何还原这颗二叉树,并求出他的后序遍历?

 

我们基于一个事实:中序遍历一定是 { 左子树中的节点集合 },root,{ 右子树中的节点集合 },前序遍历的作用就是找到每颗子树的root位置。

算法1
输入:前序遍历,中序遍历
1、寻找树的root,前序遍历的第一节点G就是root。
2、观察前序遍历GDAFEMHZ,知道了G是root,剩下的节点必然在root的左或右子树中的节点。
3、观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树中的节点,G右侧的HMZ必然是root的右子树中的节点,root不在中序遍历的末尾或开始就说明根节点的两颗子树都不为空。
4、观察左子树ADEF,按照前序遍历的顺序来排序为DAFE,因此左子树的根节点为D,并且A是左子树的左子树中的节点,EF是左子树的右子树中的节点。
5、同样的道理,观察右子树节点HMZ,前序为MHZ,因此右子树的根节点为M,左子节点H,右子节点Z。

观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了:

 

从而得到PostOrder:       AEFDHZMG(后序遍历)

//算法1

#include <iostream>
#include <fstream>
#include <string>

struct TreeNode
{
  struct TreeNode* left;
  struct TreeNode* right;
  char  elem;
};


TreeNode* BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
{
  if(length == 0)
    {
      return NULL;
    }
  TreeNode* node = new TreeNode;
  node->elem = *preorder;
  int rootIndex = 0;
  for(;rootIndex < length; rootIndex++)
    {
      if(inorder[rootIndex] == *preorder)
      break;
    }
  node->left = BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
  node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
  std::cout<<node->elem<<std::endl;
 free(node);
  return NULL;
}

int main(int argc, char** argv){
    char* pr="GDAFEMHZ";    
 char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, pr, 8); printf("\n"); return 0;}

 

posted @ 2019-04-21 10:15  像走了一光年  阅读(534)  评论(0编辑  收藏  举报