【研究生学习】Pytorch基本知识——图像识别核心模块实战
本博客主要记录一下对于图像识别的实际任务如何使用Pytorch完成一个项目
卷积网络参数定义
首先需要导入必要的模块:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets,transforms
import matplotlib.pyplot as plt
import numpy as np
其次需要定义一些超参数,并且读取数据,采用DataLoader来迭代数据:
# hyper-parameter
input_size = 28
num_classes = 10
num_epochs = 3
batch_size = 64
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
接下来就要构建卷积神经网络模块,一般卷积层、relu层和池化层可以写在一起,且卷积最后的结果还是一个特征图,需要把图转换为向量才能做分类或回归任务:
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( # 输入大小为(1,28,28)
nn.Conv2d(
in_channels=1, # 灰度图
out_channels=16, # 要得到多少特征图
kernel_size=5, # 卷积核大小
stride=1, # 步长
padding=2, # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1
),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), # 池化操作,输出结果为(16,14,14)
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2), # 输出(32,14,14)
nn.ReLU(),
nn.MaxPool2d(2), # 输出(32,7,7)
)
self.out = nn.Linear(32*7*7, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # flatten操作,结果为(batch_size, 32*7*7)
output = self.out(x)
return output
定义准确率作为评估标准:
def accurancy(predictions, labels):
pred = torch.max(predictions.data, 1)[1]
rights = pred.eq(labels.data.view_as(pred)).sum()
return rights, len(labels)
接下来就可以训练网络:
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
for epoch in range(num_epochs):
train_right = []
for batch_idx, (data, target) in enumerate(train_loader):
net.train()
output = net(data)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
right = accurancy(output, target)
train_right.append(right)
if batch_idx%100 == 0:
net.eval()
val_rights = []
for (data, target) in test_loader:
output = net(data)
right = accurancy(output, target)
val_rights.append(right)
# 准确率计算
train_r = (sum([tup[0] for tup in train_right]), sum([tup[1] for tup in train_right]))
val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))
print('当前epoch:{} [{}/{} ({:.0f}%)]\t损失:{:.6f}\t训练集准确率:{:.2f}\t测试集正确率:{:.2f}%'.format(
epoch, batch_idx*batch_size, len(train_loader.dataset),
100.*batch_idx/len(train_loader),
loss.data,
100.*train_r[0].numpy()/train_r[1],
100.*val_r[0].numpy()/val_r[1]
))
部分运行结果如下图所示: