八大排序算法
1.选择排序
java
//selectSort 每次将当前元素替换为后面最小的元素
//Java public static void selectSort(int [] nums){ int N = nums.length; for(int i = 0; i < N; i ++){ int min = i; for(int j = i + 1; j < N; j ++){ if(nums[j] < nums[min]) min = j; } int t = nums[i]; nums[i] = nums[min]; nums[min] = t; } }
python
def selection_sort(lst): for i in range(len(lst) - 1): min_index = i for j in range(i + 1, len(lst)): if lst[j] < lst[min_index]: min_index = j lst[i], lst[min_index] = lst[min_index], lst[i] return lst
2.插入排序
java
//insertSort 每次将当前元素插入到前面已经排好序的元素中 public static void insertSort(int[] a){ int N = a.length; for (int i = 0; i < N; i++) { int temp = a[i]; int j = i; for (; j > 0 && a[j-1] > temp; j--) { a[j] = a[j-1]; } a[j] = temp; } }
python
def insertion_sort(lst): for i in range(len(lst) - 1): cur_num, pre_index = lst[i+1], i while pre_index >= 0 and cur_num < lst[pre_index]: lst[pre_index + 1] = lst[pre_index] pre_index -= 1 lst[pre_index + 1] = cur_num return lst
3.希尔排序
java
//shellSort 将数组分组,并不断减小分组的步长直到为1,每次分组均进行插入排序 public static void shellSort(int[] a){ for (int step = a.length/2; step > 0; step/=2) { for (int i = step; i < a.length; i++) { int temp = a[i]; int j = i; for (; j >= step && a[j-step] > temp ; j-=step) { a[j] = a[j-step]; } a[j] = temp; } } }
python
def shell_sort(lst): n = len(lst) gap = n // 2 while gap > 0: for i in range(gap, n): for j in range(i, gap - 1, -gap): if lst[j] < lst[j - gap]: lst[j], lst[j - gap] = lst[j - gap], lst[j] else: break gap //= 2 return lst
4.归并排序
java
//mergeSort 递归 对两个有序节点序列进行合并来实现排序,分治思想 //分解的方法 public void mergeSort(int[] arr,int left,int right){ //如果左边索引小于右边就可以一直分,l=r时,就是分到只剩一个数了 if(left<right){ int mid = (left + right) / 2;//左少右多 //向左递归分解 mergeSort(arr,left,mid); //向右递归分解 mergeSort(arr,mid+1,right); //合并 merge(arr,left,mid,right); } } //合并的方法 /** * * @param arr 待排序的原始数组 * @param left 左边有序序列的初始索引 * @param mid 中间索引 * @param right 右边结束索引 * @return */ public void merge(int[] arr, int left,int mid,int right) { int i = left; int j = mid +1; int[] temp = new int[right-left+1];//中转数组 int t = 0;//temp数组的当前索引 //合并数组,比较找最大 while (i<=mid && j<=right){ if(arr[i]<=arr[j])temp[t++] = arr[i++]; else temp[t++] = arr[j++]; } while (i<=mid) temp[t++] = arr[i++]; while (j<=right) temp[t++] = arr[j++]; //将temp数组拷贝到arr数组,并不是每次都拷贝所有 t = 0; while (left<=right) arr[left++] = temp[t++]; }
python
def merge_sort(lst): def merge(left,right): i = 0 j = 0 result = [] while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) j += 1 result = result + left[i:] + right[j:] return result n = len(lst) if n <= 1: return lst mid = n // 2 left = merge_sort(lst[:mid]) right = merge_sort(lst[mid:]) return merge(left,right)
5.冒泡排序
java
//bubbleSort n-1遍历,每次找到未排序数组的最大值 public void bubbleSort(int[] arr){ for (int i = arr.length-1; i >= 0; i--) { for (int j = 0; j < i; j++) { if(arr[j]>arr[j+1]){ int temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; } } } }
python
def bubble_sort(lst): n = len(lst) for i in range(n): for j in range(1, n - i): if lst[j - 1] > lst[j]: lst[j - 1], lst[j] = lst[j], lst[j - 1] return lst
6.基数排序
java
//radixSort 按位数进行排序,借助桶bucket进行分配与收集 public void radixSort(int[] arr){ int max = 0; for (int i : arr) { if(i>max) max = i; } int count = (max+"").length(); for (int i = 1; i <= count; i++) { //分配 int[][] bucket = new int[10][arr.length]; //bucketCount用于统计该桶中元素的数量 int[] bucketCount = new int[10]; for (int value : arr) { bucket[value % (10 * i)][bucketCount[value % (10 * i)]++] = value; } //收集 int k = 0; for (int j = 0; j < 10; j++) { //如果桶中有数据,放入数组 if(bucketCount[j]!=0) { //循环该桶,取出元素到arr中,每取一个元素,桶中元素-1 while (bucketCount[j]!=0) arr[k++] = bucket[j][--bucketCount[j]]; } } } }
python
# LSD Radix Sort def radix_sort(lst): mod = 10 div = 1 mostBit = len(str(max(lst))) buckets = [[] for row in range(mod)] while mostBit: for num in lst: buckets[num // div % mod].append(num) i = 0 for bucket in buckets: while bucket: lst[i] = bucket.pop(0) i += 1 div *= 10 mostBit -= 1 return lst
7.堆排序
java
//heapSort 构建大顶堆或者小顶堆,将堆顶元素与堆尾元素交换后再调整,如此反复 public void heapSort(int[] arr){ //构建大顶堆 k为最后一个非叶子节点,逐渐-1,即从下向上,从右往左 for(int k = arr.length/2 - 1;k>=0;k--){ adjustHeap(arr,k,arr.length); } //排序 交换+调整 int temp =0; for (int i = arr.length-1; i >= 0; i--) { temp =arr [0]; arr[0] = arr[i]; arr[i] = temp; adjustHeap(arr,0,i); } } /** * * @param arr 待调整数组 * @param i 非叶子节点在数组中的索引 * @param length 对多少个元素进行调整 */ public void adjustHeap(int[] arr,int i,int length){ int temp = arr[i];//取出当前非叶子叶结点的值 //k为当前节点的左子节点 for(int k = 2*i+1;k<length;k=2*k+1){ if(k+1<length && arr[k+1]>arr[k]){//右子节点大于左子节点 k++;//k指向右子节点 } if(arr[k]>temp){//如果当前节点大于父节点就交换 arr[i] = arr[k]; i =k;//!!!!!!精髓,因为该子节点值大小发生了改变,可能会使其子根堆发生改变,索引要调整其子根堆 }else { break;//否则直接退出,因为其后面的节点一定满足堆定义 } } arr[i] = temp; }
python
def heap_sort(lst): def adjust_heap(lst, i, size): left_index = 2 * i + 1 right_index = 2 * i + 2 largest_index = i if left_index < size and lst[left_index] > lst[largest_index]: largest_index = left_index if right_index < size and lst[right_index] > lst[largest_index]: largest_index = right_index if largest_index != i: lst[largest_index], lst[i] = lst[i], lst[largest_index] adjust_heap(lst, largest_index, size) def built_heap(lst, size): for i in range(len(lst)//2)[::-1]: adjust_heap(lst, i, size) size = len(lst) built_heap(lst, size) for i in range(len(lst))[::-1]: lst[0], lst[i] = lst[i], lst[0] adjust_heap(lst, 0, i) return lst
8.快速排序
java
//quickSort 每次选择一个元素并且将整个数组以这个元素分为两部分,小于该元素的放右边,大于该元素的放左边 public void quickSort(int[] arr,int l,int r){ if(l<r){ //跳出递归的条件 //partition就是划分操作,将arr划分成满足条件的两个子表 int pivotpos = partition(arr,l,r); //依次对左右两个子表进行递归排序 quickSort(arr,l,pivotpos); quickSort(arr,pivotpos+1,r); } } public int partition(int[] arr,int l,int r){ //以当前数组的最后一个元素作为中枢pivot,进行划分 int pivot = arr[r]; while (l<r){ while (l<r && arr[l]<pivot) l++; arr[r] = arr[l];//将比中枢值大的移动到右端r处 由于r处为中枢或者该位置值已经被替换到l处,所以直接可以替换 while (l<r && arr[r]>=pivot) r--; arr[l] = arr[r];//将比中枢值小的移动到左端l处 由于前面l处的值已经换到r处,所以该位置值也可以替换掉 } //l==r时,重合,这个位置就是中枢的最终位置 arr[l] = pivot; //返回存放中枢的最终位置 return l; }
python
def quick_sort(lst): n = len(lst) if n <= 1: return lst baseline = lst[0] left = [lst[i] for i in range(1, len(lst)) if lst[i] < baseline] right = [lst[i] for i in range(1, len(lst)) if lst[i] >= baseline] return quick_sort(left) + [baseline] + quick_sort(right)