Why the Place that Jang'S Equation Blow Up is Apparent Horiozn?

  • Why the Place that Jang'S Equation Blow Up is Apparent Horiozn?

    Let's consider a simple example:
    Let us assume that the three metric is $$ds2=g_{rr}dr2+R^2(r)d\Omega$$
    extrinsic curvature is $$K{ab}=nanbK_L+(g-nanb)K_R$$
    where \(K_L\) and \(K_R\) are two scalar and \(n^a\) is the outward pointing unit normal to the surface of constant \(R\).
    The Spherical symmetry Jang's equation is

\[ \begin{equation} \frac{\sqrt{g^{rr}}}{R^2}( \frac{R^2 f_r\sqrt{g^{rr}}}{\sqrt{1+f_r^2 g^{rr}}})_{,r} +(2K_R+K_L)-K_L\frac{f_r^2 g^{rr}}{1+f_r^2 g^{rr}}=0 \end{equation} \]

The Apparent Horizon condition(expansion equation) is

\[ \begin{equation} \boxed{ \sqrt{g^{rr}}R_{,r}+RK_R=0} \end{equation} \]

If Jang's equation blow up, \(\Longleftrightarrow\)

\[\begin{equation} \displaystyle \frac{f_r\sqrt{g^{rr}}}{\sqrt{1+f_r^2 g^{rr}}}=1,\text{at the Apparent Horiozn} \end{equation} \]

,then Jang's equation reduce to

\[ \begin{align} \frac{\sqrt{g^{rr}}}{R^2}( R^2)_{,r}+2K_R &=0\\ \Longrightarrow \sqrt{g^{rr}} R_{,r}+RK_{R} &=0 \end{align} \]

posted @ 2019-09-18 15:41  yuewen_chen  阅读(138)  评论(0编辑  收藏  举报