摘要: 题意很明确,把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?解题思路:所有不同的摆放方法可以分为两类:至少有一个盘子空着和所有盘子都不空。分别计算这两类摆放方法的数目,然后把它们加起来。设f(m,n)为 m 个苹果,n 个盘子的方法数目,如果 n>m,必定有 n-m 个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响;即 if ( n>m ) ,f ( m ,n )=f( m , m)。当 n<=m 时,不同的放法可以分成两类:即有至少一个盘子空着或者所有盘子都有苹果,前一种情况相当于 f ( m , n )=f ( m , n-1 ); 阅读全文
posted @ 2011-09-01 17:29 笑巧 阅读(1000) 评论(0) 推荐(0) 编辑