摘要:
当看完这道题时,觉得似曾相识。这道题跟不久前老师给我们出的那道题很像,一看就是解同余方程。其中还有欧几里得算法的应用。 思路:两只青蛙跳一次所花费的时间相同,我们设其为t,则x+mt是青蛙A从坐标原点到终点所走的距离,y+nt是B走的距离,要想碰面,则他们相减一定是地面周长的整数倍,设为k*L;则:(x+mt)-(y+nt)=kl;变形得:(m-n)t-(y-x)=kL;即有(m-n)t mod L=y-x;为线性同余方程。此方程有解当且仅当y-x能被m-n和L的最大公约数(记为gcd(m-n,L)),即gcd(m-n,L)|y-x。这时,如果x0是方程的一个解,即当t=x0时,(m-n)t. 阅读全文