poj 1050 To the Max
DP+暴力
提交地址:http://poj.org/problem?id=1050
To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 45915 | Accepted: 24282 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
提议大体上就是求n*n的矩阵中的最大矩形面积,不同与以往的情况就是里边得值有可能是负的(n^3不会超时哦)
1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 5 #define N 101 6 7 using namespace std; 8 9 int sum[N][N]; 10 int n,x; 11 int num=-(1<<30); 12 13 int main() 14 { 15 scanf("%d",&n); 16 for(int i=1;i<=n;i++) 17 for(int j=1;j<=n;j++) 18 { 19 scanf("%d",&x); 20 sum[i][j]=sum[i][j-1]+x; //sum[i][j]表示第i行前j个数的和 21 } 22 for(int i=1;i<=n;i++) 23 for(int j=i;j<=n;j++) //i、j表示的是举行的长度 24 { 25 int t=0; 26 for(int k=1;k<=n;k++) //k表示举行的高度 27 { 28 int q=sum[k][j]-sum[k][i-1]; //枚举所有长为i—j的高为k的矩形,把他当前行的i—j位提取出来 29 //再加上它之上几行的i—j的矩形的面积,就是一个新矩形的面积 30 //本题和其他动规题一样,都是先处理小的,在由小的得到大的 31 if(t>0) t+=q; //如果当前矩阵的大小已经<0了,那么再加上就要放弃之前的矩阵,放弃一定会更优 32 else t=q; 33 num=max(num,t); //比较,取优 34 } 35 } 36 printf("%d",num); 37 return 0; 38 }