poj 1050 To the Max

DP+暴力

提交地址:http://poj.org/problem?id=1050

                                                                                     To the Max
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 45915   Accepted: 24282

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15
提议大体上就是求n*n的矩阵中的最大矩形面积,不同与以往的情况就是里边得值有可能是负的(n^3不会超时哦)
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 
 5 #define N 101
 6 
 7 using namespace std;
 8 
 9 int sum[N][N];
10 int n,x;
11 int num=-(1<<30);
12 
13 int main()
14   {
15       scanf("%d",&n);
16       for(int i=1;i<=n;i++)
17         for(int j=1;j<=n;j++)
18           {
19               scanf("%d",&x);
20               sum[i][j]=sum[i][j-1]+x;            //sum[i][j]表示第i行前j个数的和
21           }
22       for(int i=1;i<=n;i++)
23         for(int j=i;j<=n;j++)                     //i、j表示的是举行的长度 
24           {
25               int t=0;
26               for(int k=1;k<=n;k++)               //k表示举行的高度 
27                 {
28                     int q=sum[k][j]-sum[k][i-1];    //枚举所有长为i—j的高为k的矩形,把他当前行的i—j位提取出来 
29                                                     //再加上它之上几行的i—j的矩形的面积,就是一个新矩形的面积
30                                                 //本题和其他动规题一样,都是先处理小的,在由小的得到大的 
31                     if(t>0) t+=q;                   //如果当前矩阵的大小已经<0了,那么再加上就要放弃之前的矩阵,放弃一定会更优
32                       else    t=q;
33                     num=max(num,t);                 //比较,取优 
34                 }
35           }
36     printf("%d",num);
37       return 0;
38   }
To the Max

 

posted @ 2016-05-16 19:59  月沫  阅读(157)  评论(0编辑  收藏  举报