案例6-1.3 哥尼斯堡的“七桥问题” (25分)---C语言

欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?

输入格式:
输入第一行给出两个正整数,分别是节点数N (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。

输出格式:
若欧拉回路存在则输出1,否则输出0。

输入样例1:
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6

输出样例1:
1

输入样例2:
5 8
1 2
1 3
2 3
2 4
2 5
5 3
5 4
3 4

输出样例2:
0

解题过程:
欧拉回路要求:
(1)所有顶点度为偶数;//邻接矩阵很适合统计度
(2)图连通。(可用并查集)

#include <stdio.h>
#include <stdlib.h>
#define MaxVertexNum 1000
typedef int Vertex;
typedef struct MGNode *MGraph;
struct MGNode{
    int Nv;
    int Ne;
    int G[MaxVertexNum][MaxVertexNum];
};
typedef struct ENode *Edge;
struct ENode{
    Vertex V1,V2;
};
MGraph CreateGraph(int N){
    MGraph Graph;
    Graph = (MGraph)malloc(sizeof(struct MGNode));
    Graph->Nv = N;
    Graph->Ne = 0;
    Vertex V,W;
    for(V=0; V<Graph->Nv;V++){
        for(W=0; W<Graph->Nv; W++){
            Graph->G[V][W] = 0;
        }
    }
    return Graph;
}
void InsertEdge(MGraph Graph, Edge E){
    /**插入无向边**/
    Graph->G[E->V1-1][E->V2-1] = 1;
    Graph->G[E->V2-1][E->V1-1] = 1;
}
MGraph BuildGraph(){
    int N;
    scanf("%d",&N);
    MGraph Graph;
    Graph = CreateGraph(N);
    scanf("%d",&(Graph->Ne));
    if(Graph->Ne){
        Edge E = (Edge)malloc(sizeof(struct ENode));
        int i;
        for(i=0;i<Graph->Ne;i++){
            scanf("%d %d",&E->V1,&E->V2);
            InsertEdge(Graph, E);
        }
    }
    return Graph;
}
int CheckDegree(MGraph Graph){
    int Degree[MaxVertexNum];
    int i,j;
    for(i=0;i<Graph->Nv;i++){
        Degree[i] = 0;
    }
    int flag = 0;/**标志位 0-度为偶数,1-度为奇数**/
    for(i=0;i<Graph->Nv;i++){
        for(j=0;j<Graph->Nv;j++){
            Degree[i] += Graph->G[i][j];//由于是无向边 ,对称,只需考虑行

        }
        //printf("i:%d %d\n",i,Degree[i]);
        /**判断是否为偶数边**/
        if(Degree[i]%2!=0){
            flag = 1;
            break;
        }
    }
    if(flag)  return 0;
    else
        return 1;
}
int Visited[MaxVertexNum];
int DST(MGraph Graph, Vertex V, int cnt){
    Visited[V] = 1;
    //printf("1\n");

    if(cnt == Graph->Nv){
        /*若cnt等于顶点数,图连通*/
        return 1;
    }
    else{
        Vertex W;
        int flag;
        for(W=0;W<Graph->Nv; W++){
            if(!Visited[W]&&Graph->G[V][W]>0){
                cnt++;
                flag = DST(Graph, W, cnt);
                /*已确定图已连通,快速跳出*/
                //printf("%d\n",flag);
                if(flag){
                    break;
                }
            }
        }
        return flag;
    }
}
int GraphCycle(MGraph Graph){
    Vertex V,W;
    int flag=0;
    for(V=0;V<Graph->Nv;V++){
        for(W=0;W<Graph->Nv;W++){
            Visited[W]=0;
        }
        if(DST(Graph,V, 1)){
            flag = 1;
            break;
        }
    }
    if(flag)
        return 1;
    else
        return 0;

}
int main()
{
    MGraph Graph;
    Graph = BuildGraph();
    if(CheckDegree(Graph)&&GraphCycle(Graph)){
        printf("1");
    }
    else
        printf("0");
    return 0;
}
posted @ 2020-03-11 18:20  月夜沉沉  阅读(910)  评论(0编辑  收藏  举报