进程、线程和协程

 

一、进程

1、多任务原理

  多任务是指操作系统同时可以运行多个任务。

  • 单核CPU实现多任务原理:操作系统轮流让各个任务交替执行;
  • 多核CPU实现多任务原理:真正的执行多任务只能在多核CPU上实现,多出来的任务轮流调度到每个核心上执行。
  • 并发:看上去一起执行,任务数多于CPU核心数;
  • 并行:真正的一起执行,任务数小于等于CPU核心数。

  实现多任务的方式:
    1、多进程模式
    2、多线程模式
    3、协程模式
    4、多进程+多线程模式

2、进程

  对于操作系统而言,一个任务就是一个进程;

  进程是系统中程序执行和资源分配的基本单元,每个进程都有自己的数据段、代码段、堆栈段。


 

  下面是一小段程序,一个单任务的例子。在其中,有两个输出语句分别在在两个不同的循环当中,单任务的执行方式,也就是最初学习时,当一个循环没有结束的时候,无法执行到下面的程序当中。如果想要让两个循环可以同时在执行,就是在实现多任务,当然不是说同时输出,而是两个循环都在执行着。

 1 from time import sleep
 2 # 只能执行到那一个循环,执行不了run,所以叫单任务
 3 def run():
 4     while True:
 5         print("&&&&&&&&&&&&&&&")
 6         sleep(1.2)
 7 
 8 if __name__ == "__main__":
 9     while True:
10         print("**********")
11         sleep(1)
12     run()

  接下来启用多任务,通过进程来实现。

  multiprocessing库:跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象(fork仅适用于Linux)。

  下面的程序是在一个父进程中创建一个子进程,让父进程和子进程可以都在执行,创建方式程序中已经很简洁了。可以自己把这两段程序复制下来运行一下,看看输出的效果。

 1 from multiprocessing import Process
 2 from time import sleep
 3 import os
 4 
 5 def run(str):
 6     # os.getpid()获取当前进程id号
 7     # os.getppid()获取当前进程的父进程id号
 8     while True:
 9         print("&&&&&&&&&&&&&&&%s--%s--%s" % (str, os.getpid(), os.getppid()))
10         sleep(0.5)
11 
12 if __name__ == "__main__":
13     print("主(父)进程启动 %s" % (os.getpid()))
14     # 创建子进程
15     # target说明进程执行的任务
16     p = Process(target=run, args=("nice",))
17     # 启动进程
18     p.start()
19 
20     while True:
21         print("**********")
22         sleep(1)

  我想第一个单任务的程序就不必说了吧,就是一个死循环,一直没有执行到下面的run函数。第二段程序是通过多进程实现的多任务,两个循环都能执行到,我把结果截图放下面,最好自己去试一下。

3、父子进程的先后顺序

  上面的多进程的例子中输出了那么多,我们使用的时候究竟是先执行哪个后执行哪个呢?根据我们的一般思维来说,我们写的主函数其实就是父进程,在主函数中间,要调用的也就是子进程。

 

 1 from multiprocessing import Process
 2 from time import sleep
 3 import os
 4 
 5 def run():
 6     print("启动子进程")
 7     print("子进程结束")
 8     sleep(3)
 9 
10 if __name__ == "__main__":
11     print("父进程启动")
12     p = Process(target=run)
13     p.start()
14 
15     # 父进程的结束不能影响子进程,让进程等待子进程结束再执行父进程
16     p.join()
17 
18     print("父进程结束")

4、全局变量在多个进程中不能共享 

  在多进程的程序当中定义的全局变量在多个进程中是不能共享的,篇幅较长在这里就不举例子了,可以自己试一下。这个也是和稍后要说的线程的一个区别,在线程中,变量是可以共享的,也因此衍生出一些问题,稍后再说。

5、启动多个进程 

  在正常工作使用的时候,当然不止有有个一个两个进程,毕竟这一两个也起不到想要的效果。那么就需要采用更多的进程,这时候需要通过进程池来实现,就是在进程池中放好你要建立的进程,然后执行的时候,把他们都启动起来,就可以同时进行了,在一定的环境下可以大大的提高效率。当然这个也和起初提到的有关,如果你的CPU是单核的,那么多进程也只是起到了让几个任务同时在执行着,并没有提高效率,而且启动进程的时候还要花费一些时间,因此在多核CPU当中更能发挥优势。

  在multiprocessing中有个Pool方法,可以实现进程池。在利用进程池时可以设置要启动几个进程,一般情况下,它默认和你电脑的CPU核数一致,也可以自己设置,如果设置的进程数多于CPU核数,那多出来的进程会轮流调度到每个核心上执行。下面是启动多个进程的过程。

 1 from multiprocessing import Pool
 2 import os
 3 import time
 4 import random
 5 
 6 
 7 def run(name):
 8     print("子进程%s启动--%s" % (name, os.getpid()))
 9     start = time.time()
10     time.sleep(random.choice([1,2,3,4,5]))
11     end = time.time()
12     print("子进程%s结束--%s--耗时%.2f" % (name, os.getpid(), end-start))
13 
14 if __name__ == "__main__":
15     print("启动父进程")
16 
17     # 创建多个进程
18     # Pool 进程池 :括号里的数表示可以同时执行的进程数量
19     # Pool()默认大小是CPU核心数
20     pp = Pool(4)
21     for i in range(5):
22         # 创建进程,放入进程池,统一管理
23         pp.apply_async(run, args=(i,))
24 
25     # 在调用join之前必须先调用close,调用close之后就不能再继续添加新的进程了
26     pp.close()
27     # 进程池对象调用join还等待进程池中所有的子进程结束
28     pp.join()
29 
30     print("结束父进程")

6、文件拷贝(单进程与多进程对比)

(1)单进程实现

 1 from multiprocessing import Pool
 2 import time
 3 import os
 4 
 5 # 实现文件的拷贝
 6 def copyFile(rPath, wPath):
 7     fr = open(rPath, 'rb')
 8     fw = open(wPath, 'wb')
 9     context = fr.read()
10     fw.write(context)
11     fr.close()
12     fw.close()
13 
14 path = r'F:\python_note\线程、协程'
15 toPath = r'F:\python_note\test'
16 
17 # 读取path下的所有文件
18 filesList = os.listdir(path)
19 
20 # 启动for循环处理每一个文件
21 start = time.time()
22 for fileName in filesList:
23     copyFile(os.path.join(path,fileName), os.path.join(toPath,fileName))
24 
25 end = time.time()
26 print('总耗时:%.2f' % (end-start))
View Code

(2)多进程实现

 1 from multiprocessing import Pool
 2 import time
 3 import os
 4 
 5 # 实现文件的拷贝
 6 def copyFile(rPath, wPath):
 7     fr = open(rPath, 'rb')
 8     fw = open(wPath, 'wb')
 9     context = fr.read()
10     fw.write(context)
11     fr.close()
12     fw.close()
13 
14 path = r'F:\python_note\线程、协程'
15 toPath = r'F:\python_note\test'
16 
17 
18 if __name__ == "__main__":
19     # 读取path下的所有文件
20     filesList = os.listdir(path)
21 
22     start = time.time()
23     pp = Pool(4)
24     for fileName in filesList:
25         pp.apply_async(copyFile, args=(os.path.join(
26             path, fileName), os.path.join(toPath, fileName)))
27     pp.close()
28     pp.join()
29     end = time.time()
30     print("总耗时:%.2f" % (end - start))
View Code

  上面两个程序是两种方法实现同一个目标的程序,可以将其中的文件路径更换为你自己的路径,可以看到最后计算出的耗时是多少。也许有人发现并不是多进程的效率就高,说的的确没错,因为创建进程也要花费时间,没准启动进程的时间远多让这一个核心运行所有核心用的时间要多。这个例子也只是演示一下如何使用,在大数据的任务下会有更深刻的体验。

 7、进程对象

  我们知道Python是一个面向对象的语言。而且Python中万物皆对象,进程也可以封装成对象,来方便以后自己使用,只要把他封装的足够丰富,提供清晰的接口,以后使用时会快捷很多,这个就根据自己的需求自己可以试一下,不写了。

 8、进程间通信

  上面提到过进程间的变量是不能共享的,那么如果有需要该怎么办?通过队列的方式进行传递。在父进程中创建队列,然后把队列传到每个子进程当中,他们就可以共同对其进行操作。 

 1 from multiprocessing import Process, Queue
 2 import os
 3 import time
 4 
 5 
 6 def write(q):
 7     print("启动写子进程%s" % (os.getpid()))
 8     for chr in ['A', 'B', 'C', 'D']:
 9         q.put(chr)
10         time.sleep(1)
11     print("结束写子进程%s" % (os.getpid()))
12 
13 def read(q):
14     print("启动读子进程%s" % (os.getpid()))
15     while True:
16         value = q.get()
17         print("value = "+value)
18     print("结束读子进程%s" % (os.getpid()))
19 
20 if __name__ == "__main__":
21     # 父进程创建队列,并传递给子进程
22     q = Queue()
23     pw = Process(target=write, args=(q,))
24     pr = Process(target=read, args=(q,))
25 
26     pw.start()
27     pr.start()
28     # 写进程结束
29     pw.join()
30     # pr进程里是个死循环,无法等待期结束,只能强行结束
31     pr.terminate()
32     print("父进程结束")

 二、线程

1、线程

  • 在一个进程内部,要同时干多件事,就需要运行多个"子任务",我们把进程内的多个"子任务"叫做线程
  • 线程通常叫做轻型的进程,线程是共享内存空间,并发执行的多任务,每一个线程都共享一个进程的资源
  • 线程是最小的执行单元而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统来决定,程序自己不能决定什么时候执行,执行多长时间

模块:

1、_thread模块 低级模块(更接近底层)

2、threading模块 高级模块,对_thread进行了封装

2、启动一个线程

  同样,先给一个多线程的例子,其中,仍然使用run函数作为其中的一个子线程,主函数为父线程。通过threading的Thread方法创建线程并开启,join来等待子线程。

 1 import threading
 2 import time
 3 
 4 
 5 def run():
 6     print("子线程(%s)启动" % (threading.current_thread().name))
 7 
 8     # 实现线程的功能
 9     time.sleep(1)
10     print("打印")
11     time.sleep(2)
12 
13     print("子线程(%s)结束" % (threading.current_thread().name))
14 
15 
16 if __name__ == "__main__":
17     # 任何进程都默认会启动一个线程,称为主线程,主线程可以启动新的子线程
18     # current_thread():返回线程的实例
19     print("主线程(%s)启动" % (threading.current_thread().name))
20 
21     # 创建子线程
22     t = threading.Thread(target=run, name="runThread")
23     t.start()
24 
25     # 等待线程结束
26     t.join()
27 
28     print("主线程(%s)结束" % (threading.current_thread().name))

3、线程间数据共享

  多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在每个进程中,互不影响。

  而多线程所有变量都由所有线程共享。所以任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时修改一个变量,容易把内容改乱了。

 1 import threading
 2 
 3 
 4 num = 10
 5 
 6 def run(n):
 7     global num
 8     for i in range(10000000):
 9         num = num + n
10         num = num - n
11 
12 if __name__ == "__main__":
13     t1 = threading.Thread(target=run, args=(6,))
14     t2 = threading.Thread(target=run, args=(9,))
15 
16     t1.start()
17     t2.start()
18     t1.join()
19     t2.join()
20 
21     print("num = ",num)

4、线程锁

  在第三小点中已经提到了,多线程的一个缺点就是数据是共享的,如果有两个线程正同时在修改这个数据,就会出现混乱,它自己也不知道该听谁的了,尤其是在运算比较复杂,次数较多的时候,这种错误的机会会更大。

  当然,解决办法也是有的,那就是利用线程锁。加锁的意思就是在其中一个线程正在对数据进行操作时,让其他线程不得介入。这个加锁和释放锁是由人来确定的。

  • 确保了这段代码只能由一个线程从头到尾的完整执行
  • 阻止了多线程的并发执行,要比不加锁时候效率低。包含锁的代码段只能以单线程模式执行
  • 由于可以存在多个锁,不同线程持有不同的锁,并试图获取其他的锁,可能造成死锁导致多个线程挂起,只能靠操作系统强制终止
 1 def run(n):
 2     global num
 3     for i in range(10000000):    
 4         lock.acquire()
 5         try:
 6             num = num + n
 7             num = num - n
 8         finally:
 9             # 修改完释放锁
10             lock.release()
11 
12 if __name__ == "__main__":
13     t1 = threading.Thread(target=run, args=(6,))
14     t2 = threading.Thread(target=run, args=(9,))
15 
16     t1.start()
17     t2.start()
18     t1.join()
19     t2.join()
20 
21     print("num = ",num)

  上面这段程序是循环多次num+n-n+n-n的过程,变量n分别设为6和9是在两个不同的线程当中,程序中已经加了锁,你可以先去掉试一下,当循环次数较小的时候也许还能正确,但次数一旦取的较高就会出现混乱。

  加锁是在循环体当中,依次执行加减法,定义中说到确保一个线程从头到尾的完整执行,也就是在计算途中,不会有其他的线程打扰。你可以想一下,如果一个线程执行完加法,正在执行减法,另一个线程进来了,它要先进行加法时的初始sum值该是多少呢,线程二不一定在线程一的什么时候进来,万一刚进来时候,线程一恰好给sum赋值了,而线程二仍然用的是正准备进来时候的sum值,那从这里开始岂不已经分道扬镳了。所以,运算的次数越多,结果会越离谱。

  这个说完了,还有一个小小的改进。你是否记得读写文件时候书写的一种简便形式,通过with来实现,可以避免我们忘记关闭文件,自动帮我们关闭。当然还有一些其他地方也用到了这个方法。这里也同样适用。

1 # 与上面代码功能相同,with lock可以自动上锁与解锁
2 with lock:
3     num = num + n
4     num = num - n

5、ThreadLocal

  • 创建一个全局的ThreadLocal对象
  • 每个线程有独立的存储空间
  • 每个线程对ThreadLocal对象都可以读写,但是互不影响

  根据名字也可以看出,也就是在本地建个连接,所有的操作在本地进行,每个线程之间没有数据的影响。

 1 import threading
 2 
 3 
 4 num = 0
 5 local = threading.local()
 6 
 7 def run(x, n):
 8     x = x + n
 9     x = x - n
10 
11 def func(n):
12     # 每个线程都有local.x
13     local.x = num
14     for i in range(10000000):
15         run(local.x, n)
16     print("%s-%d" % (threading.current_thread().name, local.x))
17 
18 
19 if __name__ == "__main__":
20     t1 = threading.Thread(target=func, args=(6,))
21     t2 = threading.Thread(target=func, args=(9,))
22 
23     t1.start()
24     t2.start()
25     t1.join()
26     t2.join()
27 
28     print("num = ",num)

6、控制线程数量

 1 '''
 2 控制线程数量是指控制线程同时触发的数量,可以拿下来这段代码运行一下,下面启动了5个线程,但是他们会两个两个的进行
 3 '''
 4 import threading
 5 import time
 6 
 7 # 控制并发执行线程的数量
 8 sem = threading.Semaphore(2)
 9 
10 def run():
11     with sem:
12         for i in range(10):
13             print("%s---%d" % (threading.current_thread().name, i))
14             time.sleep(1)
15 
16 
17 if __name__ == "__main__":
18     for i in range(5):
19         threading.Thread(target=run).start()

  上面的程序是有多个线程,但是每次限制同时执行的线程,通俗点说就是限制并发线程的上限;除此之外,也可以限制线程数量的下限,也就是至少达到多少个线程才能触发。

 1 import threading
 2 import time
 3 
 4 
 5 # 凑够一定数量的线程才会执行,否则一直等着
 6 bar = threading.Barrier(4)
 7 
 8 def run():
 9     print("%s--start" % (threading.current_thread().name))
10     time.sleep(1)
11     bar.wait()
12     print("%s--end" % (threading.current_thread().name))
13 
14 
15 if __name__ == "__main__":
16     for i in range(5):
17         threading.Thread(target=run).start()

7、定时线程

 1 import threading
 2 
 3 
 4 def run():
 5     print("***********************")
 6 
 7 # 延时执行线程
 8 t = threading.Timer(5, run)
 9 t.start()
10 
11 t.join()
12 print("父线程结束")

8、线程通信

 1 import threading
 2 import time
 3 
 4 
 5 def func():
 6     # 事件对象
 7     event = threading.Event()
 8     def run():
 9         for i in range(5):
10             # 阻塞,等待事件的触发
11             event.wait()
12             # 重置阻塞,使后面继续阻塞
13             event.clear()
14             print("**************")
15     t = threading.Thread(target=run).start()
16     return event
17 
18 e = func()
19 
20 # 触发事件
21 for i in range(5):
22     time.sleep(2)
23     e.set()

9、一个小栗子

  这个例子是用了生产者和消费者来模拟,要进行数据通信,还引入了队列。先来理解一下。

 1 import threading
 2 import queue
 3 import time
 4 import random
 5 
 6 
 7 # 生产者
 8 def product(id, q):
 9     while True:
10         num = random.randint(0, 10000)
11         q.put(num)
12         print("生产者%d生产了%d数据放入了队列" % (id, num))
13         time.sleep(3)
14     # 任务完成
15     q.task_done()
16 
17 # 消费者
18 def customer(id, q):
19     while True:
20         item = q.get()
21         if item is None:
22             break
23         print("消费者%d消费了%d数据" % (id, item))
24         time.sleep(2)
25     # 任务完成
26     q.task_done()
27 
28 
29 if __name__ == "__main__":
30     # 消息队列
31     q = queue.Queue()
32 
33     # 启动生产者
34     for i in range(4):
35         threading.Thread(target=product, args=(i, q)).start()
36 
37     # 启动消费者
38     for i in range(3):
39         threading.Thread(target=customer, args=(i, q)).start()

10、线程调度

 1 import threading
 2 import time
 3 
 4 
 5 # 线程条件变量
 6 cond = threading.Condition()
 7 
 8 
 9 def run():
10     with cond:
11         for i in range(0, 10, 2):
12             print(threading.current_thread().name, i)
13             time.sleep(1)
14             cond.wait()  # 阻塞
15             cond.notify()  # 告诉另一个线程可以执行
16 
17 
18 def run2():
19     with cond:
20         for i in range(1, 10, 2):
21             print(threading.current_thread().name, i)
22             time.sleep(1)
23             cond.notify()
24             cond.wait()
25 
26 
27 threading.Thread(target=run).start()
28 threading.Thread(target=run2).start()

三、协程

1、协程

  • 子程序/子函数:在所有语言中都是层级调用,比如A调用B,在B执行的工程中又可以调用C,C执行完毕返回,B执行完毕返回最后是A执行完毕。是通过栈实现的,一个线程就是一个子程序,子程序调用总是一个入口,一次返回,调用的顺序是明确的
  • 协程:看上去也是子程序,但执行过程中,在子程序的内部可中断,然后转而执行别的子程序,不是函数调用,有点类似CPU中断
 1 # 这是一个子程序的调用
 2 def C():
 3     print("C--start")
 4     print("C--end")
 5 
 6 def B():
 7     print("B--start")
 8     C()
 9     print("B--end")
10 
11 def A():
12     print("A--start")
13     B()
14     print("A--end")
15 
16 A()
  • 协程与子程序调用的结果类似,但不是通过在函数中调用另一个函数
  • 协程执行起来有点像线程,但协程的特点在于是一个线程
  • 与线程相比的优点:协程的执行效率极高,因为只有一个线程,也不存在同时写变量的冲突,在协程中共享资源不加锁,只需要判断状态

2、协程的原理

 1 # python对协程的支持是通过generator实现的
 2 def run():
 3     print(1)
 4     yield 10
 5     print(2)
 6     yield 20
 7     print(3)
 8     yield 30
 9 
10 # 协程的最简单风格,控制函数的阶段执行,节约线程或者进程的切换
11 # 返回值是一个生成器
12 m = run()
13 print(next(m))
14 print(next(m))
15 print(next(m))

3、数据传输

 1 # python对协程的支持是通过generator实现的
 2 def run():
 3     print(1)
 4     yield 10
 5     print(2)
 6     yield 20
 7     print(3)
 8     yield 30
 9 
10 # 协程的最简单风格,控制函数的阶段执行,节约线程或者进程的切换
11 # 返回值是一个生成器
12 m = run()
13 print(next(m))
14 print(next(m))
15 print(next(m))

4、小栗子

 1 def product(c):
 2     c.send(None)
 3     for i in range(5):
 4         print("生产者产生数据%d" % (i))
 5         r = c.send(str(i))
 6         print("消费者消费了数据%s" % (r))
 7     c.close()
 8 
 9 
10 def customer():
11     data = ""
12     while True:
13         n = yield data
14         if not n:
15             return
16         print("消费者消费了%s" % (n))
17         data = "200"
18 
19 
20 c = customer()
21 product(c)

 

posted @ 2018-11-24 21:38  小田学Python  阅读(1227)  评论(0编辑  收藏  举报