211. Add and Search Word - Data structure design
Design a data structure that supports the following two operations:
void addWord(word) bool search(word)
search(word) can search a literal word or a regular expression string containing only letters a-z
or .
. A .
means it can represent any one letter.
For example:
addWord("bad") addWord("dad") addWord("mad") search("pad") -> false search("bad") -> true search(".ad") -> true search("b..") -> true
Note:
You may assume that all words are consist of lowercase letters a-z
.
用Trie树,如果碰到点(.),暴力地遍历当前TrieNode下的所有节点
public class WordDictionary { class TrieNode { TrieNode[] children; int count; TrieNode() { count = 0; children = new TrieNode[26]; } } TrieNode root; /** Initialize your data structure here. */ public WordDictionary() { root = new TrieNode(); } /** Adds a word into the data structure. */ public void addWord(String word) { TrieNode cur = root; int i = 0; while (i < word.length()) { if (cur.children[word.charAt(i) - 'a'] == null) { cur.children[word.charAt(i) - 'a'] = new TrieNode(); } cur = cur.children[word.charAt(i) - 'a']; i++; } cur.count++; } /** Returns if the word is in the data structure. A word could contain the dot character '.' to represent any one letter. */ public boolean search(String word) { return searchHelper(word, 0, root); } public boolean searchHelper(String word, int start, TrieNode node) { // node != null int i = start; TrieNode cur = node; while (i < word.length() && word.charAt(i) != '.') { if (cur.children[word.charAt(i) - 'a'] == null) { return false; } cur = cur.children[word.charAt(i) - 'a']; i++; } // didn't meet '.' if (i == word.length()) { if (cur.count == 0) { return false; } else { return true; } } // meet '.' for (int j = 0; j < 26; j++) { if (cur.children[j] != null && searchHelper(word, i + 1, cur.children[j])) { return true; } } return false; } } /** * Your WordDictionary object will be instantiated and called as such: * WordDictionary obj = new WordDictionary(); * obj.addWord(word); * boolean param_2 = obj.search(word); */