Soda Machine【差分+离散化】

题目链接:https://ac.nowcoder.com/acm/contest/1106/A

题目大意:

1.一条长1e9的线段,每个节点都可以上色。给出n次操作,每次操作将【l, r】区间内的节点染一次色。问最后染色次数的最大值是多少。

题解思路:

1.首先想到暴力,即遍历每个区间+1,对最终结果遍历一遍找最大值,但是1e9的长度一定超时。

2.解决超时就得缩小遍历长度,由于每个区间都是连续的,那么我们可以通过记录端点来达到记录区间同样的效果。即利用差分数组。A的差分数组B:第i位的值表示A的第i位与A的第i-1位的差值。当A数组【l,r】区间都增加k(k可为负)时,对于B,只需要改变B【l】+= k,B【r + 1】-= k。接下来讨论一下如何记录端点:对于每次给定的区间【l,r】,【l,r】区间内每一个数+1,即为B【l】+= 1,B【r + 1】-= 1。最后n次操作结束后,对B差分数组进行前缀和,即可得到染色最大次数。

3.由于1e9的区间长度,我们还需要进行离散化,我的思路是将出现的点升序排序并去重。对于每个点都映射为其排序后的下标。(用map实现)

代码如下:

 1 #include<stdio.h>
 2 #include<map>
 3 #include<string.h>
 4 #include<algorithm>
 5 const int MAXN = 1e5 + 100;
 6 using namespace std;
 7 
 8 int a[MAXN], sum[MAXN], b[MAXN];
 9 map<int, int>mp;
10 
11 struct Query
12 {
13     int l, r;
14 }q[MAXN / 2];
15 
16 int main()
17 {
18     int n, cnt = 0;
19     scanf("%d", &n);
20     for(int i = 1; i <= n; i ++)
21     {
22         int l, r;
23         scanf("%d%d", &l, &r);
24         q[i].l = l, q[i].r = r;
25         a[++ cnt] = l, a[++ cnt] = r;
26     }
27     sort(a + 1, a + 1 + cnt);
28     int len = (unique(a + 1, a + 1 + cnt) - (a + 1));
29     for(int i = 1; i <= len; i ++)
30         mp[a[i]] = i;
31     for(int i = 1; i <= n; i ++)
32     {
33         b[mp[q[i].l]] ++;
34         b[mp[q[i].r] + 1] --;
35     }
36     int ans = 0;
37     for(int i = 1; i <= len; i ++)
38     {
39         sum[i] = sum[i - 1] + b[i];
40         ans = max(ans, sum[i]);
41     }
42     printf("%d\n", ans);
43     return 0;
44 }
View Code

 

posted @ 2019-10-28 23:33  缘未到  阅读(350)  评论(0编辑  收藏  举报