Number theory

Number theory

TimeLimit:2000MS  MemoryLimit:524MB
64-bit integer IO format:%I64d
 
Problem Description
Given a integers x = 1, you have to apply Q (Q ≤ 100000) operations: Multiply, Divide.
Input

First line of the input file contains an integer T(0 < T ≤ 10) that indicates how many cases of inputs are there.

The description of each case is given below:

The first line contains two integers Q and M. The next Q lines contains the operations in ith line following form:

M yi: x = x * yi.

N di: x = x / ydi.

It’s ensure that di is different. That means you can divide yi only once after yi came up.

0 < yi ≤ 10^9, M ≤ 10^9

Output

For each operation, print an integer (one per line) x % M.

SampleInput
1
10 1000000000
M 2
D 1
M 2
M 10
D 3
D 4
M 6
M 7
M 12
D 7
SampleOutput
2
1
2
20
10
1
6
42
504
84


这题的题意就是说给你t组数据,每组数据Q次查询,对于每次查询的结果对M取余数;
对于每次的查询,给你M z,表示x(每组数据起始x=1)更新为x*z,N di表示当前的x除以第di行的M 后面的值;
每次查询的结果对常量M取余


思路:由于每次查询结果要取余,这里我们很容易就想到逆元的做法,但是假如除数和取余数不互质的话,这里逆元就不存在了,因此行不通;
关于这题,我们可以把要乘的数当成我们所要得到的答案的因子,用线段树来维护答案x(即为root结点),root结点的值必定为所有数的积,这里每个数只会出现
一次,所有除以某个数我们可以把那个对应的因子变为1,相当于这个数对x没有贡献了。

 

 
#include<stdio.h>
#include<string.h>
using namespace std;
#define LL long long
const int maxn=1e6+5;
int mod;
struct node
{
    int l,r;
    LL num;
}T[maxn*4];
void push_up(int rt)
{
    T[rt].num=T[rt<<1].num%mod*T[rt<<1|1].num%mod%mod;
}
void build(int rt,int l,int r)
{
    T[rt].l=l;
    T[rt].r=r;
    if(l==r)
    {
        T[rt].num=1;
        return ;
    }
    int mid=(l+r)>>1;
    build(rt<<1,l,mid);
    build(rt<<1|1,mid+1,r);
    push_up(rt);
}
void update(int rt,int x,int val)///找到下标为x处更新为val
{
    if(T[rt].l==x&&T[rt].r==x)
    {
        T[rt].num=val;
        return ;
    }
    int mid=(T[rt].l+T[rt].r)/2;
    if(x <= mid)
        update(rt<<1,x,val);
    else
        update(rt<<1|1,x,val);
    push_up(rt);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int q;
        scanf("%d %d",&q,&mod);
        build(1,1,q);
        for(int i=1;i<=q;i++)
        {
            getchar();
            char c;
            int x;
            scanf("%c %d",&c,&x);
            if(c=='M')
            {
                update(1,i,x);
                printf("%I64d\n",T[1].num);

            }
            else
            {
                update(1,x,1);
                printf("%I64d\n",T[1].num);
            }
        }
    }
    return 0;
}

  













posted @ 2019-05-06 20:16  Q1311605467  阅读(264)  评论(0编辑  收藏  举报