9.24
\(z_1,z_2,z_3,z_4为四个互不相等的复数,|z_i-z_0| = r>0(即共圆)\)
\(求证:\dfrac{z_1-z_3}{z_1-z_4}\dfrac{z_2-z_4}{z_2-z_3}\in R\)
\(情形1:\angle z_4z_1z_3 = \angle z_4z_2z_3即\alpha = \beta\)
\(如图,有:\)
\[\dfrac{z_4-z_2}{|z_4-z_2|} = \dfrac{z_3-z_2}{|z_3-z_2|}e^{i\alpha}
\]
\[\dfrac{z_4-z_1}{|z_4-z_1|} = \dfrac{z_3-z_1}{|z_3-z_1|}e^{i\beta}
\]
\(以上二式消去指数部分即得:\)
\(\dfrac{z_1-z_3}{z_1-z_4}\dfrac{z_2-z_4}{z_2-z_3} = \dfrac{|z_1-z_3|}{|z_1-z_4|}\dfrac{|z_2-z_4|}{|z_2-z_3|}\in R^+\)
\(情形2:\alpha+\beta = \pi\)
\[\dfrac{z_4-z_2}{|z_4-z_2|} = \dfrac{z_3-z_2}{|z_3-z_2|}e^{i\beta}
\]
\[\dfrac{z_4-z_1}{|z_4-z_1|} = \dfrac{z_3-z_1}{|z_3-z_1|}e^{-i\alpha}
\]
\(以上二式消去指数部分(e^{i\pi} = -1)即得:\)
\(\dfrac{z_1-z_3}{z_1-z_4}\dfrac{z_2-z_4}{z_2-z_3} = -\dfrac{|z_1-z_3|}{|z_1-z_4|}\dfrac{|z_2-z_4|}{|z_2-z_3|}\in R^-\)
\(综上:\dfrac{z_1-z_3}{z_1-z_4}\dfrac{z_2-z_4}{z_2-z_3}\in R\)