一类三角函数定积分

一类三角函数的定积分

浙江大学 · yuanhongyi2004

\(题1(东京大学2023入学试题)\)
\(对于k\in N^+,记\)

\[A_k = \int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|sin(x^2)|dx \]

\((1)证明:\dfrac{1}{\sqrt{(k+1)\pi}}\le A_k\le\dfrac{1}{\sqrt{k\pi}}\)
\((2)对于n\in N^+,记\)

\[B_n = \dfrac{1}{\sqrt{n}}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|sin(x^2)|dx \]

\(求\lim\limits_{n\to\infty}B_n\)

\(解:(1)积分上下限有根号,sin中有平方,因此想到换元\)
\(令x = \sqrt{t}得:\)

\[A_k = \int_{k\pi}^{(k+1)\pi}\dfrac{|sint|}{2\sqrt{t}}dt \]

\(注意到\)

\[\int^{(k+1)\pi}_{k\pi}|sint|dt = 2 \]

\(由单调性得:\dfrac{1}{\sqrt{(k+1)\pi}}\le\dfrac{1}{\sqrt{t}}\le\dfrac{1}{\sqrt{k\pi}}\)
\(放缩即证得结论!\)
\((2)将区间[n\pi,2n\pi]变成[n\pi,(n+1)\pi],...[(2n-1)\pi,2n\pi]\)
\(应用(1)中的不等式:\)

\[\dfrac{1}{\sqrt{n}}(\dfrac{1}{\sqrt{(n+1)\pi}}+...+\dfrac{1}{\sqrt{2n\pi}})\le B_n\le\dfrac{1}{\sqrt{n}}(\dfrac{1}{\sqrt{n\pi}}+...+\dfrac{1}{\sqrt{(2n-1)\pi}}) \]

\(考虑右边的式子,将\dfrac{1}{\sqrt{n}}变为\sqrt{n}·\dfrac{1}{n}并把\sqrt{n}放入括号里的式子\)
\(因此右边和式可写为:\)

\[\dfrac{1}{\sqrt{\pi}}\sum\limits_{k=0}^{n-1}\dfrac{1}{n}\sqrt{\dfrac{1}{1+\frac{k}{n}}} \]

\(同理右边和式可写为:\)

\[\dfrac{1}{\sqrt{\pi}}\sum\limits_{k=1}^{n}\dfrac{1}{n}\sqrt{\dfrac{1}{1+\frac{k}{n}}} \]

\(如果n\to\infty,则它们均等于\int^1_0\dfrac{dx}{\sqrt{1+x}} = \dfrac{2(\sqrt{2}-1)}{\sqrt{\pi}}.\)

评注:第一问,利用单调性建立特殊区间上的不等式;第二问利用第一问的结论转化为数列和的极限,这里我用定积分处理,如果还有更好的处理方法欢迎指出!

题2(数学分析课本习题)
\(计算\lim\limits_{x\to+\infty}\dfrac{\int_0^x|sint|dt}{x}\)
\(x\to+\infty不好刻画,因此取特殊区间再令n\to\infty\)
\(解:设f(x) = \int^x_0|sint|dt,f'(x) = |sinx|>0\)
\(因此f(x)递增,当n\pi\le x\le(n+1)\pi时,有f(n\pi)\le f(x)\le f((n+1)\pi)\)
\(f(n\pi) = \int_0^{n\pi}|sint|dt = n\int_0^\pi|sint|dt = 2n.\)
\(同理f((n+1)\pi) = 2(n+1)\)
\(所以x\in(n\pi,(n+1)\pi)时,\dfrac{2n}{(n+1)\pi}<\dfrac{f(x)}{x}<\dfrac{2(n+1)}{n\pi}\)
\(令n\to\infty得\dfrac{f(x)}{x}\to\dfrac{2}{\pi}\)

注1:此题几何意义为平均面积
注2:可以归纳以下结论:
\(设f(x)在[0,+\infty)连续非负,周期为T,且\int_0^Tf(x)dx = I\)则:
\(\lim\limits_{x\to+\infty}\dfrac{f(x)}{x} = \dfrac{I}{T}\)

题3(题2类似题)
\(f(x) = x-[x],计算\lim\limits_{x\to+\infty}\dfrac{f(x)}{x}\)
\(由题2结论可以得到答案等于\dfrac{1}{2}\)

题4(题2改编题)
\(计算\lim\limits_{x\to+\infty}\dfrac{\int_0^xt|sint|dt}{x^2}\)

\(解:x\in(n\pi,(n+1)\pi),f(x) = \int_0^xt|sint|dt\in(f(n\pi),f[(n+1)\pi])\)
\(下面计算f(n\pi) = \int_0^{n\pi}t|sint|dt\)
\(\int_0^{n\pi}t|sint|dt = \int_0^{n\pi}(n\pi-t)|sint|dt = \dfrac{n\pi}{2}\int_0^{n\pi}|sint|dt = \dfrac{n^2\pi}{2}\)
(上面用了区间再现和加和除2的计算技巧)
\(同理f[(n+1)\pi] =\dfrac{(n+1)^2}{2}\)
\(由此易得,\lim\limits_{x\to+\infty}\dfrac{f(x)}{x} = \dfrac{1}{\pi}\)

注:洛必达法则对2,3,4题均失效,当出现这种情况并且x的情况比较模糊的时候,被积函数又有周期性,可以取特殊的区间进行分析.

posted @ 2023-02-27 22:44  yuanhongyi2004  阅读(143)  评论(0编辑  收藏  举报