最短路径 bellman-ford

  1. 初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0
  2. 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次,看下面的描述性证明(当做树))
  3. 检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在d[v]中
    #include<iostream>
    #include<cstdio>
    using namespace std;
    #define MAX 0x3f3f3f3f
    #define N 1010
    int nodenum, edgenum, original; //点,边,起点
    typedef struct Edge //边
    {
      int u, v;
      int cost;
    }Edge;
    Edge edge[N];
    int dis[N], pre[N];
    bool Bellman_Ford()
    {
      for(int i = 1; i <= nodenum; ++i) //初始化
        dis[i] = (i == original ? 0 : MAX);
      for(int i = 1; i <= nodenum - 1; ++i)
        for(int j = 1; j <= edgenum; ++j)
          if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
          {
            dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
            pre[edge[j].v] = edge[j].u;
          }
          bool flag = 1; //判断是否含有负权回路
          for(int i = 1; i <= edgenum; ++i)
            if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
            {
              flag = 0;
              break;
            }
            return flag;
    }
    void print_path(int root) //打印最短路的路径(反向)
    {
      while(root != pre[root]) //前驱
      {
        printf("%d-->", root);
        root = pre[root];
      }
      if(root == pre[root])
        printf("%d\n", root);
    }
    int main()
    {
      scanf("%d%d%d", &nodenum, &edgenum, &original);
      pre[original] = original;
      for(int i = 1; i <= edgenum; ++i)
      {
        scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
      }
      if(Bellman_Ford())
        for(int i = 1; i <= nodenum; ++i) //每个点最短路
        {
          printf("%d\n", dis[i]);
          printf("Path:");
          print_path(i);
        }
      else
        printf("have negative circle\n");
      return 0;
    }
    

      

posted on 2017-07-24 09:36  远搏  阅读(118)  评论(0编辑  收藏  举报

导航