poj 1012
Poj 1012 约瑟夫环问题
本题是约瑟夫环的变形那么先说说约瑟夫问题的数学方法
无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意: 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。 我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始): k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2 并且从k开始报0。 现在我们把他们的编号做一下转换: k --> 0 k+1 --> 1 k+2 --> 2 ... ... k-2 --> n-2 k-1 --> n-1 变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n 如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式: 令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式 f[1]=0; f[i]=(f[i-1]+m)%i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1 由于是逐级递推,不需要保存每个f[i],程序也是异常简单:*/
#include <stdio.h>
main()
{
int n, m, i, s=0;
printf("N=");
scanf("%d", &n);
printf("M=");
scanf("%d", &m);
for(i=2; i<=n; i++)
s=(s+m)%i;
printf("The winner is %d\n", s+1);
}
本题是约瑟夫环变形 先引入Joseph递推公式,设有n个人(0,...,n-1),数m,则第i轮出局的人为f(i)=(f(i-1)+m-1)%(n-i+1),f(0)=0; f(i) 表示当前子序列中要退出的那个人(当前序列编号为0~(n-i));
拿个例子说:K=4,M=30;
f(0)=0;
f(1)=(f(0)+30-1)%8=5; 序列(0,1,2,3,4,5,6,7)中的5
f(2)=(f(1)+30-1)%7=6; 序列(0,1,2,3,4,6,7)中的7
f(3)=(f(2)+30-1)%6=5; 序列(0,1,2,3,4,6)中的6
f(4)=(f(3)+30-1)%5=4; 序列(0,1,2,3,4)中的4
........
依据题意,前K个退出的人必定是后K个人,所以只要前k轮中只要有一次f(i)<k则此m不符合题意。
接下来说说m的取值范围:我们考察一下只剩下k+1个人时候情况,即坏人还有一个未被处决,那么在这一轮中结束位置必定在最后一个坏人,那么开始位置在哪呢?这就需要找K+2个人的结束位置,然而K+2个人的结束位置必定是第K+2个人或者第K+1个人,这样就出现两种顺序情况:GGGG.....GGGXB 或 GGGG......GGGBX (X表示有K+2个人的那一轮退出的人)所以有K+1个人的那一轮的开始位置有两种可能即第一个位置或K+1的那个位置,限定m有两种可能:t(k+1) 或 t(k+1)+1; t>=1; 若遍历每一个m必定超时,避免超时则需要打表和限制m的范围。
#include<stdio.h> int a[14]; int f(int k,int m) { int n,i,s; n=2*k;s=0; for(i=0;i<k;i++) { s=(s+m-1)%(n-i); if(s<k) return 0;//遇到前k轮中有小于k的直接返回0 } return 1; } int main() { int i,k,n; for(k=1;k<=14;k++) { i=k+1; while(1) { if(f(k,i))//t(k+1)的情况 { a[k]=i; break; } else if(f(k,i+1))//t(k+1)+1的情况 { a[k]=i+1; break; } i+=k+1; } } while(scanf("%d",&n) && n) { printf("%d\n",a[n]); } return 0; }