数据仓库-基本框架和内容

数据仓库:
  维度建模
  数据分层
  命名规范
  元数据管理

数据模型设计
  前提设定: 物理世界的每一个度量事件 与对应的 事实表行 具有一对一的关系
  内涵:数据组织,存储和使用的方法
  注意方面: 功能实现 质量管理 性能效率 存储成本和收益 可扩展和方便维护
    适应变化,一致性,及时, 安全 可追溯
    适应变化: 业务快速发展, 人员快速变化, 业务功底不足
  要什么:
    指标和度量: 原子型
    比例 比率 变化型 排名型

1.维度建模:
  01.维度建模基本概念:
    主题域 粒度 维度 度量 事实表
    维度: 缓慢变化维
  02.维度建模5步骤:
    确定主题域 业务过程
    确定粒度   特定级别的细节数据,细节程度 01.粒度是维度的组合 02 业务含义
    确定维度
    确定度量 创建事实表

  说明:
    维度属性:
      查询的约束条件 分组汇总和排序, 确定主维度 和相关维度,从相关维度表中选择或生成新的维度
      多值维度
      维度的层次结构; 层次结构扁平化 层次桥接表
    时间周期: 计算周期

  03.维度
    缓慢变化维 : 重新维度值 增加维度行 增加维度列
    维度建模总线
    维度退化
    维度整合和拆分

  04.事实表选用

    事务事实表
    周期快照事实表
    累积快照事实表


2 数据分层

     从业务角度: 运营层(数据缓存,数据准备)、公共层(模型,标准)、服务层(应用服务,数据产品)

 从技术角度
    数据近源层、
    公用模型层 (公共明细层、公共汇总层、公共维度层)
    数据应用层

3.命名规范
  数据表名 表意 表字符长度

 

4.元数据管理

     技术元数据

    业务元数据

 

5.数据管理和评估
  数据分级: 分级依据-指标敏感等级,-指标重要等级
  价值评估 容错率 调用率


6.指标分类体系
  以数仓分层(ODS-CDM<DWD/DWS/DIM>-ADS),
  维度建模作为理论基础,构建数据总线。标准化数据域、业务过程、维度、度量,
  按原子指标、派生指标(原子指标+业务限定+时间周期构建)、衍生指标(派生指标的简单复合运算),形成指标构建方式分类体系。

参考:

  

posted @ 2020-09-22 12:50  辰令  阅读(462)  评论(0编辑  收藏  举报