Leetcode题目96.不同的二叉搜索树(动态规划-中等)

题目描述:

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

思路解析:

动态规划

假设n个节点存在

令G(n)表示从1到n可以形成二叉排序树个数

令f(i)为以i为根的二叉搜索树的个数

即有:G(n) = f(1) + f(2) + f(3) + f(4) + ... + f(n)

n为根节点,当i为根节点时,其左子树节点个数为[1,2,3,...,i-1],右子树节点个数为[i+1,i+2,...n],所以当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,即f(i) = G(i-1)*G(n-i),

上面两式可得:G(n) = G(0)*G(n-1)+G(1)*(n-2)+...+G(n-1)*G(0)

代码实现:

class Solution {
    public int numTrees(int n) {
        int[] dp = new int[n + 1];
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 0; j < i; j++) {
                dp[i] += dp[j] * dp[i - j - 1];
            }
        }
        return dp[n];
    }
}

空间复杂度:O(N

posted @ 2019-11-08 15:25  菜鸟奋斗史  阅读(323)  评论(0编辑  收藏  举报