poj 1019 Number Sequence 【组合数学+数字x的位宽函数】
题目地址:http://poj.org/problem?id=1019
Number Sequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 35680 | Accepted: 10287 |
Description
A single positive integer i is given. Write a program to find the digit located in the position i in the sequence of number groups S1S2...Sk. Each group Sk consists of a sequence of positive integer numbers ranging from 1 to k, written one after another.
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
Input
The
first line of the input file contains a single integer t (1 ≤ t ≤ 10),
the number of test cases, followed by one line for each test case. The
line for a test case contains the single integer i (1 ≤ i ≤ 2147483647)
Output
There should be one output line per test case containing the digit located in the position i.
Sample Input
2 8 3
Sample Output
2 2
分析:序列如上所示,要求这个序列的第n位是什么,首先需要知道的是:一个数x的宽度怎么算?可以每次让x除10,看看多少次可以除尽。
不过比较麻烦,有简单的算法:f[x]=log10(x)+1; 999的位宽=log10(999)+1=3;
有了这个就可以来想怎么解决上面的问题。
参考博客1:http://www.cnblogs.com/ACShiryu/archive/2011/08/05/2129009.html
参考博客2:http://blog.csdn.net/lyy289065406/article/details/6648504
一个大序列可以划分成许多个有规律的子序列,先找到第n位在那个子序列上,再找到在子序列的那个数字上,再找到在该数字的哪一位上。
代码:
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <ctype.h> #include <math.h> #include <cmath> #include <iostream> #include <string> #include <queue> #include <stack> #include <vector> #include <algorithm> #define N 100000+100 using namespace std; long long int f[40000]; long long int s[40000]; int main() { int i, j; memset(f, 0, sizeof(f)); memset(s, 0, sizeof(s)); long long int sum=0; f[1]=1; s[1]=1; i=2; while( i<=31269 ) { f[i]=f[i-1]+(int)log10((double)i)+1; s[i]=s[i-1]+f[i]; i++; }//打表 int tg; scanf("%d", &tg); while(tg--){ int n; scanf("%d", &n); for(i=1; i<=31269; i++){ if(s[i]>=n) break; } int pos=i; //找到在第pos个子序列上 n=n-s[pos-1]; for(j=1; j<=pos; j++){ n=n-((int)log10((double)j)+1); //减去当前这个数的宽度 if(n<=0){ break; } } int pos2=j;//找到在子序列的第pos2个数上 n=n+(int)log10((double)pos2)+1;//在这个数的第n位上 int dd=(int)log10((double)pos2)+1-n; int q=1, w=1; for(i=1; i<=dd; i++) {q=q*10; w=w*10;} w=w*10; int ans; ans=pos2%w/q; printf("%d\n", ans );//输出结果 } return 0; }