算法—数据结构学习笔记(一)复杂度分析
一、什么是复杂度分析?
1、数据结构和算法让计算机更快速度、更省空间的解决问题,因此需从执行时间和占用空间两个维度来评估数据结构和算法的性能,分别用时间复杂度和空间复杂度两个概念来描述性能问题,二者统称为复杂度;复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。
二、为什么要进行复杂度分析?
1、和性能测试相比,复杂度分析有不依赖执行环境、成本低、效率高、易操作、指导性强的特点;性能测试都是在开发完毕在进行。
2、掌握复杂度分析,将能编写出性能更优的代码,有利于降低系统开发和维护成本。
三、如何进行复杂度分析?
1、大O表示法
1)来源
算法的执行时间与每行代码的执行次数成正比,用T(n) = O(f(n))表示,其中T(n)表示算法执行总时间,f(n)表示每行代码执行总次数,而n往往表示数据的规模。
2)特点
以时间复杂度为例,由于时间复杂度描述的是算法执行时间与数据规模的增长变化趋势,所以常量阶、低阶以及系数实际上对这种增长趋势不产决定性影响,所以在做时间复杂度分析时忽略这些项。
2、复杂度分析法则
1)单段代码看高频,只关注循环执行次数最多的一段代码:比如循环。第4行和第5行都运行了n次,所以时间复杂度为 O(n)。
1 int cal(int n) { 2 int sum = 0; 3 int i = 1; 4 for (; i <= n; ++i) { 5 sum = sum + i; 6 } 7 return sum; 8 }
2)多段代码取最大:比如一段代码中有单循环和多重循环,那么取多重循环的复杂度。此示例代码时间复杂度为O(n²)。
1 int cal(int n) { 2 int sum = 0; 3 int i = 1; 4 int j = 1; 5 for (; i <= n; ++i) { 6 j = 1; 7 for (; j <= n; ++j) { 8 sum = sum + i * j; 9 } 10 } 11 }
3)嵌套代码求乘积:比如递归、多重循环等。 cal() 函数的第 4~6 行执行n次,所以 cal() 函数在不包括f()函数的时候时间复杂度为O(n);f()函数在12~13行执行n次,所以 f() 函数的时间复杂度为O(n);所以 cal() 函数在包括f()函数的时候时间复杂度为O(n²)。
1int cal(int n) { 2 int ret = 0; 3 int i = 1; 4 for (; i < n; ++i) { 5 ret = ret + f(i); 6 } 7 } 8 9 int f(int n) { 10 int sum = 0; 11 int i = 1; 12 for (; i < n; ++i) { 13 sum = sum + i; 14 } 15 return sum; 16 }
4)多个规模求加法:比如方法有两个参数控制两个循环的次数,那么这时就取二者复杂度相加。
int cal(int n) { int sum_1 = 0; int p = 1; for (; p < 100; ++p) { sum_1 = sum_1 + p; } int sum_2 = 0; int q = 1; for (; q < n; ++q) { sum_2 = sum_2 + q; } int sum_3 = 0; int i = 1; int j = 1; for (; i <= n; ++i) { j = 1; for (; j <= n; ++j) { sum_3 = sum_3 + i * j; } } return sum_1 + sum_2 + sum_3; }
四、常用的复杂度级别?
多项式阶:随着数据规模的增长,算法的执行时间和空间占用,按照多项式的比例增长。包括,
O(1)(常数阶)、O(logn)(对数阶)、O(n)(线性阶)、O(nlogn)(线性对数阶)、O(n^2)(平方阶)、O(n^3)(立方阶)
非多项式阶:随着数据规模的增长,算法的执行时间和空间占用暴增,这类算法性能极差。包括,
O(2^n)(指数阶)、O(n!)(阶乘阶)
五、如何掌握好复杂度分析方法?
复杂度分析关键在于多练,所谓孰能生巧。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步