Day 71 应用工具_中间件_消息队列 RabbitMQ
消息队列 RabbitMQ
什么是消息队列(MQ)
MQ全称为Message Queue 消息队列(MQ)是一种应用程序对应用程序的通信方法。MQ是消费-生产者模型的一个典型的代表,一端往消息队列中不断写入消息,而另一端则可以读取队列中的消息。这样发布者和使用者都不用知道对方的存在。
我们先不管消息(Message)这个词,来看看队列(Queue)。这一看,队列大家应该都熟悉吧。
消息队列可以简单理解为:把要传输的数据放在队列中。
为什么要用消息队列?
消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ。
接下来利用一个外卖系统的消息推送给大家解释下MQ的意义。
RabbitMQ
rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。中文文档。官网地址
rabbitmq的安装
环境
CentOS7
RabbitMQ 3.6.5
erlang 18.3
socat
rabbitmq是使用erlang语言编写的,所以需要先安装erlang,其次rabbitmq安装依赖于socat,所以三个安装包都需要下载。另外rabbitmq对于erlang的版本是有要求的,这个可以去官网查看。
wget www.rabbitmq.com/releases/erlang/erlang-18.3-1.el7.centos.x86_64.rpm wget http://repo.iotti.biz/CentOS/7/x86_64/socat-1.7.3.2-5.el7.lux.x86_64.rpm wget www.rabbitmq.com/releases/rabbitmq-server/v3.6.5/rabbitmq-server-3.6.5-1.noarch.rpm # 一定要按顺序!!! rpm -ivh erlang-18.3-1.el7.centos.x86_64.rpm rpm -ivh socat-1.7.3.2-5.el7.lux.x86_64.rpm rpm -ivh rabbitmq-server-3.6.5-1.noarch.rpm # 修改配置 vim /usr/lib/rabbitmq/lib/rabbitmq_server-3.6.5/ebin/rabbit.app {default_user, <<"guest">>}, 修改为 {default_user, []},
{loopback_users, [<<"guest">>]}, 修改为 {loopback_users, []}, # 启动与关闭 /usr/lib/rabbitmq/bin/rabbitmq-server start & ps -fe|grep 5672 /usr/lib/rabbitmq/bin/rabbitmqctl stop
管理插件:rabbitmq-plugins enable rabbitmq-management
遇到的问题,报错:pika.exceptions.ProbableAuthenticationError,可以查看日志(重要):
tail -f /var/log/rabbitmq/rabbit\@Minion.log
rabbitMQ工作模型
简单模式
### 生产者 import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") ### 消费者 import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.basic_consume(queue='hello', auto_ack=True, on_message_callback=callback) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming()
参数
应答参数
auto_ack=False
ch.basic_ack(delivery_tag=method.delivery_tag)
持久化参数
#声明queue channel.queue_declare(queue='hello2', durable=True) # 若声明过,则换一个名字 channel.basic_publish(exchange='', routing_key='hello2', body='Hello World!', properties=pika.BasicProperties( delivery_mode=2, # make message persistent ) )
分发参数
有两个消费者同时监听一个的队列。其中一个线程sleep2秒,另一个消费者线程sleep1秒,但是处理的消息是一样多。这种方式叫轮询分发(round-robin)不管谁忙,都不会多给消息,总是你一个我一个。想要做到公平分发(fair dispatch),必须关闭自动应答ack,改成手动应答。使用basicQos(perfetch=1)限制每次只发送不超过1条消息到同一个消费者,消费者必须手动反馈告知队列,才会发送下一个。
channel.basic_qos(prefetch_count=1)
交换机模式(exchange)
交换机之发布订阅
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
# 生产者 import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs', exchange_type='fanout') message = "info: Hello World!" channel.basic_publish(exchange='logs', routing_key='', body=message) print(" [x] Sent %r" % message) connection.close() # 消费者 import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs', exchange_type='fanout') result = channel.queue_declare("",exclusive=True) queue_name = result.method.queue channel.queue_bind(exchange='logs', queue=queue_name) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(queue=queue_name, auto_ack=True, on_message_callback=callback) channel.start_consuming()
交换机之关键字
# 生产者 import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs2', exchange_type='direct') message = "info: Hello Yuan!" channel.basic_publish(exchange='logs2', routing_key='info', body=message) print(" [x] Sent %r" % message) connection.close() # 消费者 import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs2', exchange_type='direct') result = channel.queue_declare("",exclusive=True) queue_name = result.method.queue severities = sys.argv[1:] if not severities: sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0]) sys.exit(1) for severity in severities: channel.queue_bind(exchange='logs2', queue=queue_name, routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(queue=queue_name, auto_ack=True, on_message_callback=callback) channel.start_consuming()
交换机之通配符
通配符交换机”与之前的路由模式相比,它将信息的传输类型的key更加细化,以“key1.key2.keyN....”的模式来指定信息传输的key的大类型和大类型下面的小类型,让消费者可以更加精细的确认自己想要获取的信息类型。而在消费者一段,不用精确的指定具体到哪一个大类型下的小类型的key,而是可以使用类似正则表达式(但与正则表达式规则完全不同)的通配符在指定一定范围或符合某一个字符串匹配规则的key,来获取想要的信息。
“通配符交换机”(Topic Exchange)将路由键和某模式进行匹配。此时队列需要绑定在一个模式上。符号“#”匹配一个或多个词,符号“*”仅匹配一个词。因此“audit.#”能够匹配到“audit.irs.corporate”,但是“audit.*”只会匹配到“audit.irs”。(这里与我们一般的正则表达式的“*”和“#”刚好相反,这里我们需要注意一下。)
下面是一个解释通配符模式交换机工作的一个样例
上面的交换机制类似于一个国际新闻讯息网站的机制。
# 生产者 import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs3', exchange_type='topic') message = "info: Hello ERU!" channel.basic_publish(exchange='logs3', routing_key='europe.weather', body=message) print(" [x] Sent %r" % message) connection.close() # 消费者 import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs3', exchange_type='topic') result = channel.queue_declare("",exclusive=True) queue_name = result.method.queue channel.queue_bind(exchange='logs3', queue=queue_name, routing_key="#.news") print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(queue=queue_name, auto_ack=True, on_message_callback=callback) channel.start_consuming()
基于rabbitmq的RPC实现
关于RPC
rpc的实现
- 1.生产端 生成rpc_queue队列,这个队列负责帮消费者 接收数据并把消息发给消费端。
- 2.生产端 生成另外一个随机队列,这个队列是发给消费端,消费这个用这个队列把处理好的数据发送给生产端。
- 3.生产端 生成一组唯一字符串UUID,发送给消费者,消费者会把这串字符作为验证在发给生产者。
- 4.当消费端处理完数据,发给生产端,时会把处理数据与UUID一起通过随机生产的队列发回给生产端。
- 5.生产端,会使用while循环 不断检测是否有数据,并以这种形式来实现阻塞等待数据,来监听消费端。
- 6.生产端获取数据调用回调函数,回调函数判断本机的UUID与消费端发回UID是否匹配,由于消费端,可能有多个,且处理时间不等所以需要判断,判断成功赋值数据,while循环就会捕获到,完成交互。
client
import pika import uuid import time # 斐波那契数列 前两个数相加依次排列 class FibonacciRpcClient(object): def __init__(self): # 赋值变量,一个循环值 self.response = None # 链接远程 self.connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) self.channel = self.connection.channel() # 生成随机queue result = self.channel.queue_declare("",exclusive=True) # 随机取queue名字,发给消费端 self.callback_queue = result.method.queue # self.on_response 回调函数:只要收到消息就调用这个函数。 # 声明收到消息后就 收queue=self.callback_queue内的消息 self.channel.basic_consume(queue=self.callback_queue, auto_ack=True, on_message_callback=self.on_response) # 收到消息就调用 # ch 管道内存对象地址 # method 消息发给哪个queue # body数据对象 def on_response(self, ch, method, props, body): # 判断本机生成的ID 与 生产端发过来的ID是否相等 if self.corr_id == props.correlation_id: # 将body值 赋值给self.response self.response = body def call(self, n): # 随机一次唯一的字符串 self.corr_id = str(uuid.uuid4()) # routing_key='rpc_queue' 发一个消息到rpc_queue内 self.channel.basic_publish(exchange='', routing_key='rpc_queue', properties=pika.BasicProperties( # 执行命令之后结果返回给self.callaback_queue这个队列中 reply_to = self.callback_queue, # 生成UUID 发送给消费端 correlation_id = self.corr_id, ), # 发的消息,必须传入字符串,不能传数字 body=str(n)) # 没有数据就循环收 while self.response is None: # 非阻塞版的start_consuming() # 没有消息不阻塞 self.connection.process_data_events() print("no msg...") time.sleep(0.5) return int(self.response) # 实例化 fibonacci_rpc = FibonacciRpcClient() response = fibonacci_rpc.call(50) print(" [.] Got %r" % response)
server
#_*_coding:utf-8_*_ import pika import time # 链接socket connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost')) channel = connection.channel() # 生成rpc queue channel.queue_declare(queue='rpc_queue') # 斐波那契数列 def fib(n): if n == 0: return 0 elif n == 1: return 1 else: return fib(n-1) + fib(n-2) # 收到消息就调用 # ch 管道内存对象地址 # method 消息发给哪个queue # props 返回给消费的返回参数 # body数据对象 def on_request(ch, method, props, body): n = int(body) print(" [.] fib(%s)" % n) # 调用斐波那契函数 传入结果 response = fib(n) ch.basic_publish(exchange='', # 生产端随机生成的queue routing_key=props.reply_to, # 获取UUID唯一 字符串数值 properties=pika.BasicProperties(correlation_id = \ props.correlation_id), # 消息返回给生产端 body=str(response)) # 确保任务完成 # ch.basic_ack(delivery_tag = method.delivery_tag) # rpc_queue收到消息:调用on_request回调函数 # queue='rpc_queue'从rpc内收 channel.basic_consume(queue="rpc_queue", auto_ack=True, on_message_callback=on_request) print(" [x] Awaiting RPC requests") channel.start_consuming()