摘要:
15.1问题的动机 将正常的样本绘制成图表(假设可以),如下图所示: 当新的测试样本同样绘制到图标上,如果偏离中心越远说明越可能不正常,使用某个可能性阈值,当低于正常可能性阈值时判断其为异常,然后做进一步的检查。异常检测常用于工业生产、异常用户等实际场景中。 以上这种方法叫密度评估: 15.2高斯分 阅读全文
摘要:
18.1问题描述和流程图 (1)图像文字识别是从给定的一张图片中识别文字。 (2)流程包括: 1.文字侦测 2.字符切分(现在不需要切分了) 3.字符分类 18.2滑动窗口 在行人检测中,滑动窗口是首先训练一个固定尺寸输入的判断是否有行人的网络,然后在一张图片中裁该尺寸的图片,送入到网络中;然后不断 阅读全文
摘要:
14.1动机一:数据压缩 将特征进行降维,如将相关的二维降到一维: 三维变二维: 以此类推把1000维数据降成100维数据。 14.2动机二:数据可视化 如50个维度的数据是无法进行可视化的,使用降维的方法可以使其降到2维,然后进行可视化。 降维的算法只负责减少维度,新产生的特征的意义就必须有我们自 阅读全文
摘要:
13.1无监督学习:简介 将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。 13.2K-均值算法 (1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。 将每个样本 阅读全文
摘要:
12.1目标优化 (1)以下是逻辑回归以及单个样本的代价函数 (2)首先将使用上图中紫色的线(称为cost1或者cost0)的代替曲线,然后将样本数m去掉,最后将C代替1/λ(可以这么理解,但不完全是),从而实现逻辑回归的代价函数到SVM的转换。 (3)SVM的输出将不再是逻辑回归的概率,而就是0或 阅读全文
摘要:
11.1首先要做什么 本章将在随后的课程中讲误差分析,然后怎样用一个更加系统性非方法,从一堆不同的方法中,选取合适的那一个。 11.2误差分析 构建一个学习算法的推荐方法为: (1)从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算法; (2)绘制学习曲线,决定是增加更多数据, 阅读全文
摘要:
10.1决定下一步该干什么 当系统的效果很差时,你可能考虑到收集更多的样本,也可能: (1)尝试减少特征的数量; (2)尝试获得更多的特征; (3)尝试增加多项式特征; (4)尝试减少正则化程度λ; (5)尝试增加正则化程度λ。 如果做决策将是本章的内容。而不是盲目的选择一种策略。 10.2评估一个 阅读全文
摘要:
9.1代价函数 (1)假设神经网络的训练样本有m个,每一个包含一组输入x和一组输出信号y,L表示神经网络的层数,Sl表示每一层的神经元个数,SL代表最后一层中处理单元的个数。 则代价函数为(同样不对θ0正则化): 9.2反向传播算法 前向传播算法: 用δ表示误差,则δ(4)=a(4)-y 前一层的误 阅读全文
摘要:
8.1非线性假设 (1)无论线性回归还是逻辑回归当特征量太多时,计算的负荷会非常大。如50x50像素有2500特征,如果两两组合将会有25002/2个(接近300万个特征)。普通的线性回归和逻辑回归模型不能有效处理这么多特征,这时候需要用神经网络了。 8.2神经元和大脑 大脑的某一块可以经过学习,学 阅读全文
摘要:
7.1过拟合的问题 训练集表现良好,测试集表现差。鲁棒性差。以下是两个例子(一个是回归问题,一个是分类问题) 解决办法: (1)丢弃一些不能帮助我们正确预测的特征。可以使用工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(PCA); (2)正则化。保留素有的特征,但是减少参数的大小。 7.2代价 阅读全文
摘要:
6.1分类问题 回归问题的输出可能是很大的数,而在分类问题中,比如二分类,希望输出的值是0或1,如何将回归输出的值转换成分类的输出0,1成为关键。 6.2假说表示 其中: hθ(x)的作用是,对于给定的输入变量,根据选择的参数计算输出变量=1的可能性即hθ(x)=P(y=1|x;θ)。 6.3判定边 阅读全文
摘要:
推荐使用python,本节略。 阅读全文
摘要:
4.1多维特征 上图中列数即为特征的个数,行数是样本数。函数假设如下: 其中x0=1。 4.2多变量梯度下降 和单变量的损失函数相同: 其中, 求导迭代如下: 4.3梯度下降法实践1-特征缩放 特征之间的尺度变化相差很大(如一个是0-1000,一个是0-5),梯度算法需要非常多次的迭代才能收敛,如下 阅读全文
摘要:
3.1矩阵和向量 几行几列即为矩阵。Aij表示第i行第j列。 只有一行或者一列的称为向量,向量是一种特殊矩阵。一般向量指的是列向量。 3.2加法和标量乘法 加法:元素对应相加。 标量乘法:标量和矩阵每一个元素相乘。 3.3矩阵向量乘法 3.4矩阵乘法 要求:第一个矩阵的列数等于第二个矩阵的行数,如m 阅读全文
摘要:
2.1模型表示 (1)监督学习中的回归问题案例房价预测 (2)监督算法的工作方式 案例中:m表示训练集的数量,x代表特征/输入变量,y代表目标变量/输出变量,(x,y)代表实例,(x(i),y(i))代表第i个观察实例,h代表假设/函数/输入到输出的映射。 (3)房价预测的一种表达方式:h(Θ)=Θ 阅读全文
摘要:
1.1欢迎 1.2机器学习是什么 (1)一种机器学习的定义:一个程序被认为能从经验E中学习,解决任务T,达到性能指标度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。 (2)机器学习算法主要分为监督学习和非监督学习。监督学习是我们将教计算机如何去完成任务,非监督学习是我们打 阅读全文
摘要:
论文全名:Detecting Text in Natural Image with Connectionist Text Proposal Network 1.摘要 (1)本文提出新型网络CTPN,用于自然图像中的文本行定位。CTPN直接在卷积特征映射中的一系列细粒度文本提议中检测文本行。(创新一) 阅读全文
摘要:
1.知识点 (1)指针可以指向任何类型,也可以指向函数。每个函数在内存中都占用一段存储单元,这段存储单元的首地址称为函数的入口地址,指向之歌函数入口地址的指针称为函数指针。 (2)函数基本用法如下: 注意:(2.1)函数名等价于函数的入口地址;(2.2)定义函数指针时()不能少,如果少了int *p 阅读全文
摘要:
1.知识点 (1)在程序中可以声明指向任何数据类型的指针,指针也可以指向指针类型,成为指向指针的指针。下面是一个使用例子 (2)如果想通过指针在被调函数中修改主调函数的变量,必须将主调函变量(务必确定该变量的类型,有时候可能变量本身就是指针,这时候形参就需要是指针的指针了)的地址作为参数,在被调函数 阅读全文
摘要:
说明:主要考虑深度学习的方法,传统的方法不在考虑范围之内。 1.文字识别步骤 1.1detection:找到有文字的区域(proposal)。 1.2classification:识别区域中的文字。 2.文字检测 文字检测主要有两条线,两步法和一步法。 2.1两步法:faster-rcnn. 2.2 阅读全文