k8s自定义controller设计与实现
k8s自定义controller设计与实现
创建CRD
-
登录可以执行kubectl命令的机器,创建student.yaml
apiVersion: apiextensions.k8s.io/v1beta1 kind: CustomResourceDefinition metadata: # metadata.name的内容是由"复数名.分组名"构成,如下,students是复数名,bolingcavalry.k8s.io是分组名 name: students.bolingcavalry.k8s.io spec: # 分组名,在REST API中也会用到的,格式是: /apis/分组名/CRD版本 group: bolingcavalry.k8s.io # list of versions supported by this CustomResourceDefinition versions: - name: v1 # 是否有效的开关. served: true # 只有一个版本能被标注为storage storage: true # 范围是属于namespace的 scope: Namespaced names: # 复数名 plural: students # 单数名 singular: student # 类型名 kind: Student # 简称,就像service的简称是svc shortNames: - stu
-
在student.yaml所在目录执行命令kubectl apply -f student.yaml,即可在k8s环境创建Student的定义,今后如果发起对类型为Student的对象的处理,k8s的api server就能识别到该对象类型了
创建Student对象
前面的步骤使得k8s能识别Student类型了,接下来创建Students对象
-
创建object-student.yaml文件
apiVersion: bolingcavalry.k8s.io/v1 kind: Student metadata: name: object-student spec: name: "张三" school: "深圳中学"
-
在object-student.yaml文件所在目录执行命令kubectl apply -f object-student.yaml,会看到提示创建成功
-
执行命令kubectl get stu可见已创建成功的Student对象
至此,自定义API对象(也就是CRD)就创建成功了,此刻我们只是让k8s能识别到Student这个对象的身份,但是当我们创建Student对象的时候,还没有触发任何业务(相对于创建Pod对象的时候,会触发kubelet在node节点创建docker容器)
自动生成代码
为什么要做controller
如果仅仅是在etcd保存Student对象是没有什么意义的,试想通过deployment创建pod时,如果只在etcd创建pod对象,而不去node节点创建容器,那这个pod对象只是一条数据而已,没有什么实质性作用,其他对象如service、pv也是如此。
controller的作用就是监听指定对象的新增、删除、修改等变化,针对这些变化做出相应的响应(例如新增pod的响应为创建docker容器)
如上图,API对象的变化会通过Informer存入队列(WorkQueue),在Controller中消费队列的数据做出响应,响应相关的具体代码就是我们要做的真正业务逻辑。
自动生成代码是什么
从上图可以发现整个逻辑还是比较复杂的,为了简化我们的自定义controller开发,k8s的大师们利用自动代码生成工具将controller之外的事情都做好了,我们只要专注于controller的开发就好。
开始实战
接下来要做的事情就是编写API对象Student相关的声明的定义代码,然后用代码生成工具结合这些代码,自动生成Client、Informet、WorkQueue相关的代码;
-
在$GOPATH/src目录下创建一个文件夹k8s_customize_controller
-
进入文件夹执行如下命令创建三层目录
mkdir -p pkg/apis/bolingcavalry
-
在新建的bolingcavalry目录下创建文件register.go
package bolingcavalry const( GroupName = "bolingcavalry.k8s.io" Version = "v1" )
-
在新建的bolingcavalry目录下创建名为v1的文件夹
-
在v1文件夹下创建文件doc.go
// +k8s:deepcopy-gen=package // +groupName=bolongcavalry.k8s.io package v1
上述代码中的两行注释,都是代码生成工具会用到的,一个是声明为整个v1包下的类型定义生成DeepCopy方法,另一个声明了这个包对应的API的组名,和CRD中的组名一致;
-
在v1文件夹创建文件types.go,里面定义Student对象的具体内容
package v1 import ( metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" ) // +genclient // +genclient:noStatus // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object type Student struct { metav1.TypeMeta `json:",inline"` metav1.ObjectMeta `json:"metadata,omitempty"` Spec StudentSpec `json:"spec"` } type StudentSpec struct { name string `json:"name"` school string `json:"school"` } // +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object // StudentList is a list of Student resources type StudentList struct { metav1.TypeMeta `json:",inline"` metav1.ListMeta `json:"metadata"` Items []Student `json:"items"` }
从上述源码可见,Student对象的内容已经被设定好,主要有name和school这两个字段,表示学生的名字和所在学校,因此创建Student对象的时候内容就要和这里匹配了;
-
在v1目录下创建register.go文件,此文件的作用是通过addKnownTypes方法使得client可以知道Student类型的API对象
package v1 import ( metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/runtime" "k8s.io/apimachinery/pkg/runtime/schema" "k8s_customize_controller/pkg/apis/bolingcavalry" ) var SchemeGroupVersion = schema.GroupVersion{ Group: bolingcavalry.GroupName, Version: bolingcavalry.Version, } var ( SchemeBuilder = runtime.NewSchemeBuilder(addKnownTypes) AddToScheme = SchemeBuilder.AddToScheme ) func Resource(resource string) schema.GroupResource { return SchemeGroupVersion.WithResource(resource).GroupResource() } func Kind(kind string) schema.GroupKind { return SchemeGroupVersion.WithKind(kind).GroupKind() } func addKnownTypes(scheme *runtime.Scheme) error { scheme.AddKnownTypes( SchemeGroupVersion, &Student{}, &StudentList{}, ) // register the type in the scheme metav1.AddToGroupVersion(scheme, SchemeGroupVersion) return nil }
-
至此,为自动生成代码做的准备工作已经完成
-
执行以下命令,会先下载依赖包,再下载代码生成工具,再执行代码生成工作:
cd $GOPATH/src \ && go get -u -v k8s.io/apimachinery/pkg/apis/meta/v1 \ && go get -u -v k8s.io/code-generator/... \ && cd $GOPATH/src/k8s.io/code-generator \ && ./generate-groups.sh all \ k8s_customize_controller/pkg/client \ k8s_customize_controller/pkg/apis \ bolingcavalry:v1 #如果code-generator安装失败(网络原因),可以手动下载代码安装,在执行上面命令 git clone https://github.com/kubernetes/code-generator ./generate-groups.sh all "$ROOT_PACKAGE/pkg/client" "$ROOT_PACKAGE/pkg/apis" "$CUSTOM_RESOURCE_NAME:$CUSTOME_RESOURCE_VERSION"
-
如果代码没问题,会看到以下输出
Generating deepcopy funcs Generating clientset for bolingcavalry:v1 at k8s_customize_controller/pkg/client/clientset Generating listers for bolingcavalry:v1 at k8s_customize_controller/pkg/client/listers Generating informers for bolingcavalry:v1 at k8s_customize_controller/pkg/client/informers
-
此时再去$GOPATH/src/k8s_customize_controller目录下执行tree命令,可见已生成了很多内容
[root@master k8s_customize_controller]# tree . └── pkg ├── apis │ └── bolingcavalry │ ├── register.go │ └── v1 │ ├── doc.go │ ├── register.go │ ├── types.go │ └── zz_generated.deepcopy.go └── client ├── clientset │ └── versioned │ ├── clientset.go │ ├── doc.go │ ├── fake │ │ ├── clientset_generated.go │ │ ├── doc.go │ │ └── register.go │ ├── scheme │ │ ├── doc.go │ │ └── register.go │ └── typed │ └── bolingcavalry │ └── v1 │ ├── bolingcavalry_client.go │ ├── doc.go │ ├── fake │ │ ├── doc.go │ │ ├── fake_bolingcavalry_client.go │ │ └── fake_student.go │ ├── generated_expansion.go │ └── student.go ├── informers │ └── externalversions │ ├── bolingcavalry │ │ ├── interface.go │ │ └── v1 │ │ ├── interface.go │ │ └── student.go │ ├── factory.go │ ├── generic.go │ └── internalinterfaces │ └── factory_interfaces.go └── listers └── bolingcavalry └── v1 ├── expansion_generated.go └── student.go 21 directories, 27 files
如上所示,zz_generated.deepcopy.go就是DeepCopy代码文件,client目录下的内容都是客户端相关代码,在开发controller时会用到;
client目录下的clientset、informers、listers的身份和作用可以和前面的图结合来理解
编写controller代码
现在已经能监听到Student对象的增删改等事件,接下来就是根据这些事件来做不同的事情,满足个性化的业务需求
-
编写的第一个go文件就是controller.go,在k8s_customize_controller目录下创建controller.go
package main import ( "fmt" "time" "github.com/golang/glog" corev1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/errors" "k8s.io/apimachinery/pkg/util/runtime" utilruntime "k8s.io/apimachinery/pkg/util/runtime" "k8s.io/apimachinery/pkg/util/wait" "k8s.io/client-go/kubernetes" "k8s.io/client-go/kubernetes/scheme" typedcorev1 "k8s.io/client-go/kubernetes/typed/core/v1" "k8s.io/client-go/tools/cache" "k8s.io/client-go/tools/record" "k8s.io/client-go/util/workqueue" bolingcavalryv1 "github.com/zq2599/k8s-controller-custom-resource/pkg/apis/bolingcavalry/v1" clientset "github.com/zq2599/k8s-controller-custom-resource/pkg/client/clientset/versioned" studentscheme "github.com/zq2599/k8s-controller-custom-resource/pkg/client/clientset/versioned/scheme" informers "github.com/zq2599/k8s-controller-custom-resource/pkg/client/informers/externalversions/bolingcavalry/v1" listers "github.com/zq2599/k8s-controller-custom-resource/pkg/client/listers/bolingcavalry/v1" ) const controllerAgentName = "student-controller" const ( SuccessSynced = "Synced" MessageResourceSynced = "Student synced successfully" ) // Controller is the controller implementation for Student resources type Controller struct { // kubeclientset is a standard kubernetes clientset kubeclientset kubernetes.Interface // studentclientset is a clientset for our own API group studentclientset clientset.Interface studentsLister listers.StudentLister studentsSynced cache.InformerSynced workqueue workqueue.RateLimitingInterface recorder record.EventRecorder } // NewController returns a new student controller func NewController( kubeclientset kubernetes.Interface, studentclientset clientset.Interface, studentInformer informers.StudentInformer) *Controller { utilruntime.Must(studentscheme.AddToScheme(scheme.Scheme)) glog.V(4).Info("Creating event broadcaster") eventBroadcaster := record.NewBroadcaster() eventBroadcaster.StartLogging(glog.Infof) eventBroadcaster.StartRecordingToSink(&typedcorev1.EventSinkImpl{Interface: kubeclientset.CoreV1().Events("")}) recorder := eventBroadcaster.NewRecorder(scheme.Scheme, corev1.EventSource{Component: controllerAgentName}) controller := &Controller{ kubeclientset: kubeclientset, studentclientset: studentclientset, studentsLister: studentInformer.Lister(), studentsSynced: studentInformer.Informer().HasSynced, workqueue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "Students"), recorder: recorder, } glog.Info("Setting up event handlers") // Set up an event handler for when Student resources change studentInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: controller.enqueueStudent, UpdateFunc: func(old, new interface{}) { oldStudent := old.(*bolingcavalryv1.Student) newStudent := new.(*bolingcavalryv1.Student) if oldStudent.ResourceVersion == newStudent.ResourceVersion { //版本一致,就表示没有实际更新的操作,立即返回 return } controller.enqueueStudent(new) }, DeleteFunc: controller.enqueueStudentForDelete, }) return controller } //在此处开始controller的业务 func (c *Controller) Run(threadiness int, stopCh <-chan struct{}) error { defer runtime.HandleCrash() defer c.workqueue.ShutDown() glog.Info("开始controller业务,开始一次缓存数据同步") if ok := cache.WaitForCacheSync(stopCh, c.studentsSynced); !ok { return fmt.Errorf("failed to wait for caches to sync") } glog.Info("worker启动") for i := 0; i < threadiness; i++ { go wait.Until(c.runWorker, time.Second, stopCh) } glog.Info("worker已经启动") <-stopCh glog.Info("worker已经结束") return nil } func (c *Controller) runWorker() { for c.processNextWorkItem() { } } // 取数据处理 func (c *Controller) processNextWorkItem() bool { obj, shutdown := c.workqueue.Get() if shutdown { return false } // We wrap this block in a func so we can defer c.workqueue.Done. err := func(obj interface{}) error { defer c.workqueue.Done(obj) var key string var ok bool if key, ok = obj.(string); !ok { c.workqueue.Forget(obj) runtime.HandleError(fmt.Errorf("expected string in workqueue but got %#v", obj)) return nil } // 在syncHandler中处理业务 if err := c.syncHandler(key); err != nil { return fmt.Errorf("error syncing '%s': %s", key, err.Error()) } c.workqueue.Forget(obj) glog.Infof("Successfully synced '%s'", key) return nil }(obj) if err != nil { runtime.HandleError(err) return true } return true } // 处理 func (c *Controller) syncHandler(key string) error { // Convert the namespace/name string into a distinct namespace and name namespace, name, err := cache.SplitMetaNamespaceKey(key) if err != nil { runtime.HandleError(fmt.Errorf("invalid resource key: %s", key)) return nil } // 从缓存中取对象 student, err := c.studentsLister.Students(namespace).Get(name) if err != nil { // 如果Student对象被删除了,就会走到这里,所以应该在这里加入执行 if errors.IsNotFound(err) { glog.Infof("Student对象被删除,请在这里执行实际的删除业务: %s/%s ...", namespace, name) return nil } runtime.HandleError(fmt.Errorf("failed to list student by: %s/%s", namespace, name)) return err } glog.Infof("这里是student对象的期望状态: %#v ...", student) glog.Infof("实际状态是从业务层面得到的,此处应该去的实际状态,与期望状态做对比,并根据差异做出响应(新增或者删除)") c.recorder.Event(student, corev1.EventTypeNormal, SuccessSynced, MessageResourceSynced) return nil } // 数据先放入缓存,再入队列 func (c *Controller) enqueueStudent(obj interface{}) { var key string var err error // 将对象放入缓存 if key, err = cache.MetaNamespaceKeyFunc(obj); err != nil { runtime.HandleError(err) return } // 将key放入队列 c.workqueue.AddRateLimited(key) } // 删除操作 func (c *Controller) enqueueStudentForDelete(obj interface{}) { var key string var err error // 从缓存中删除指定对象 key, err = cache.DeletionHandlingMetaNamespaceKeyFunc(obj) if err != nil { runtime.HandleError(err) return } //再将key放入队列 c.workqueue.AddRateLimited(key) }
上述代码有以下几处关键点:
a. 创建controller的NewController方法中,定义了收到Student对象的增删改消息时的具体处理逻辑,除了同步本地缓存,就是将该对象的key放入消息中;
b. 实际处理消息的方法是syncHandler,这里面可以添加实际的业务代码,来响应Student对象的增删改情况,达到业务目的; -
接下来可以写main.go了,不过在此之前把处理系统信号量的辅助类先写好,然后在main.go中会用到(处理例如ctrl+c的退出),在$GOPATH/src/k8s_customize_controller/pkg目录下新建目录signals;
-
在signals目录下新建文件signal_posix.go:
// +build !windows package signals import ( "os" "syscall" ) var shutdownSignals = []os.Signal{os.Interrupt, syscall.SIGTERM}
-
在signals目录下新建文件signal_windows.go
package signals import ( "os" ) var shutdownSignals = []os.Signal{os.Interrupt}
-
在signals目录下新建文件signal.go
package signals import ( "os" "os/signal" ) var onlyOneSignalHandler = make(chan struct{}) func SetupSignalHandler() (stopCh <-chan struct{}) { close(onlyOneSignalHandler) // panics when called twice stop := make(chan struct{}) c := make(chan os.Signal, 2) signal.Notify(c, shutdownSignals...) go func() { <-c close(stop) <-c os.Exit(1) // second signal. Exit directly. }() return stop }
-
接下来可以编写main.go了,在k8s_customize_controller目录下创建main.go文件,内容如下,关键位置已经加了注释,就不再赘述了:
package main import ( "flag" "time" "github.com/golang/glog" "k8s.io/client-go/kubernetes" "k8s.io/client-go/tools/clientcmd" // Uncomment the following line to load the gcp plugin (only required to authenticate against GKE clusters). // _ "k8s.io/client-go/plugin/pkg/client/auth/gcp" clientset "k8s_customize_controller/pkg/client/clientset/versioned" informers "k8s_customize_controller/pkg/client/informers/externalversions" "k8s_customize_controller/pkg/signals" ) var ( masterURL string kubeconfig string ) func main() { flag.Parse() // 处理信号量 stopCh := signals.SetupSignalHandler() // 处理入参 cfg, err := clientcmd.BuildConfigFromFlags(masterURL, kubeconfig) if err != nil { glog.Fatalf("Error building kubeconfig: %s", err.Error()) } kubeClient, err := kubernetes.NewForConfig(cfg) if err != nil { glog.Fatalf("Error building kubernetes clientset: %s", err.Error()) } studentClient, err := clientset.NewForConfig(cfg) if err != nil { glog.Fatalf("Error building example clientset: %s", err.Error()) } studentInformerFactory := informers.NewSharedInformerFactory(studentClient, time.Second*30) //得到controller controller := NewController(kubeClient, studentClient, studentInformerFactory.Bolingcavalry().V1().Students()) //启动informer go studentInformerFactory.Start(stopCh) //controller开始处理消息 if err = controller.Run(2, stopCh); err != nil { glog.Fatalf("Error running controller: %s", err.Error()) } } func init() { flag.StringVar(&kubeconfig, "kubeconfig", "", "Path to a kubeconfig. Only required if out-of-cluster.") flag.StringVar(&masterURL, "master", "", "The address of the Kubernetes API server. Overrides any value in kubeconfig. Only required if out-of-cluster.") }
至此,所有代码已经编写完毕,接下来是编译构建
编译构建和启动
-
在$GOPATH/src/k8s_customize_controller目录下,执行以下命令:
go get k8s.io/client-go/kubernetes/scheme \ && go get github.com/golang/glog \ && go get k8s.io/kube-openapi/pkg/util/proto \ && go get k8s.io/utils/buffer \ && go get k8s.io/utils/integer \ && go get k8s.io/utils/trace
-
上述脚本将编译过程中依赖的库通过go get方式进行获取,属于笨办法,更好的方法是选用一种包依赖工具,具体的可以参照k8s的官方demo,这个代码中同时提供了godep和vendor两种方式来处理上面的包依赖问题,地址是:https
-
解决了包依赖问题后,在$GOPATH/src/k8s_customize_controller目录下执行命令go build,即可在当前目录生成k8s_customize_controller文件;
-
将文件k8s_customize_controller复制到k8s环境中,记得通过chmod a+x命令给其可执行权限;
-
执行命令./k8s_customize_controller -kubeconfig=$HOME/.kube/config -alsologtostderr=true,会立即启动controller
总结
现在小结一下自定义controller开发的整个过程:
-
创建CRD(Custom Resource Definition),令k8s明白我们自定义的API对象;
-
编写代码,将CRD的情况写入对应的代码中,然后通过自动代码生成工具,将controller之外的informer,client等内容较为固定的代码通过工具生成;
-
编写controller,在里面判断实际情况是否达到了API对象的声明情况,如果未达到,就要进行实际业务处理,而这也是controller的通用做法;
-
实际编码过程并不负载,动手编写的文件如下:
├── controller.go ├── main.go └── pkg ├── apis │ └── bolingcavalry │ ├── register.go │ └── v1 │ ├── doc.go │ ├── register.go │ └── types.go └── signals ├── signal.go ├── signal_posix.go └── signal_windows.go
原文链接:https://blog.csdn.net/boling_cavalry/article/details/88924194
本文作者:尹瑞星
本文链接:https://www.cnblogs.com/yrxing/p/14472018.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步