Android的消息机制

一、简介

  Android的消息机制主要是指Handler的运行机制,那么什么是Handler的运行机制那?通俗的来讲就是,使用Handler将子线程的Message放入主线程的Messagequeue中,在主线程使用。

二、学习内容

  学习Android的消息机制,我们需要先了解如下内容。

  1. 消息的表示:Message
  2. 消息队列:MessageQueue
  3. 消息循环,用于循环取出消息进行处理:Looper
  4. 消息处理,消息循环从消息队列中取出消息后要对消息进行处理:Handler

  平常我们接触的大多是Handler和Message,今天就让我们来深入的了解一下他们。

三、代码详解

  一般而言我们都是这样使用Handler的

  

 xxHandler.sendEmptyMessage(xxx);

  当然还有其他表示方法,但我们深入到源代码中,会发现,他们最终都调用了一个方法

 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

  sendMessageAtTime()方法,但这依然不是结束,我们可以看到最后一句enqueueMessage(queue, msg, uptimeMillis);按字面意思来说插入一条消息,那么疑问来了,消息插入了哪里。

  

 1   boolean enqueueMessage(Message msg, long when) {
 2         if (msg.target == null) {
 3             throw new IllegalArgumentException("Message must have a target.");
 4         }
 5         if (msg.isInUse()) {
 6             throw new IllegalStateException(msg + " This message is already in use.");
 7         }
 8 
 9         synchronized (this) {
10             if (mQuitting) {
11                 IllegalStateException e = new IllegalStateException(
12                         msg.target + " sending message to a Handler on a dead thread");
13                 Log.w(TAG, e.getMessage(), e);
14                 msg.recycle();
15                 return false;
16             }
17 
18             msg.markInUse();
19             msg.when = when;
20             Message p = mMessages;
21             boolean needWake;
22             if (p == null || when == 0 || when < p.when) {
23                 // New head, wake up the event queue if blocked.
24                 msg.next = p;
25                 mMessages = msg;
26                 needWake = mBlocked;
27             } else {
28                 // Inserted within the middle of the queue.  Usually we don't have to wake
29                 // up the event queue unless there is a barrier at the head of the queue
30                 // and the message is the earliest asynchronous message in the queue.
31                 needWake = mBlocked && p.target == null && msg.isAsynchronous();
32                 Message prev;
33                 for (;;) {
34                     prev = p;
35                     p = p.next;
36                     if (p == null || when < p.when) {
37                         break;
38                     }
39                     if (needWake && p.isAsynchronous()) {
40                         needWake = false;
41                     }
42                 }
43                 msg.next = p; // invariant: p == prev.next
44                 prev.next = msg;
45             }
46 
47             // We can assume mPtr != 0 because mQuitting is false.
48             if (needWake) {
49                 nativeWake(mPtr);
50             }
51         }
52         return true;
53     }

  进入源代码,我们发现,我们需要了解一个新类Messagequeue。

  虽然我们一般把他叫做消息队列,但是通过研究,我们发下,它实际上是一种单链表的数据结构,而我们对它的操作主要是插入和读取。

  看代码33-44,学过数据结构,我们可以轻松的看出,这是一个单链表的插入末尾的操作。

  这样就明白了,我们send方法实质就是向Messagequeue中插入这么一条消息,那么另一个问题随之而来,我们该如何处理这条消息。

  处理消息我们离不开一个重要的,Looper。那么它在消息机制中又有什么样的作用那?

  Looper扮演着消息循环的角色,具体而言它会不停的从MessageQueue中查看是否有新消息如果有新消息就会立刻处理,否则就已知阻塞在那里,现在让我们来看一下他的代码实现。

  首先是构造方法

 private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

      可以发现,它将当前线程对象保存了起来。我们继续

  Looper在新线程创建过程中有两个重要的方法looper.prepare() looper.loop

  

new Thread(){
    public void run(){
        Looper.prepare();
        Handler handler = new Handler();
        Looper.loop();
    }
}.start();
        

我们先来看prepare()方法

1 private static void prepare(boolean quitAllowed) {
2         if (sThreadLocal.get() != null) {
3             throw new RuntimeException("Only one Looper may be created per thread");
4         }
5         sThreadLocal.set(new Looper(quitAllowed));
6     }

咦,我们可以看到这里面又有一个ThreadLocal类,我们在这简单了解一下,他的特性,set(),get()方法。

    首先ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储后,只有在制定线程中可以获取存储的数据,对于其他线程而言则无法获取到数据。简单的来说。套用一个列子:

private ThreadLocal<Boolean> mBooleanThreadLocal = new                ThreadLocal<Boolean>();//


mBooleanThreadLocal.set(true);
Log.d(TAH,"Threadmain"+mBooleanThreadLocal.get());
new Thread("Thread#1"){
    public void run(){
        mBooleanThreadLocal.set(false);
        Log.d(TAH,"Thread#1"+mBooleanThreadLocal.get());
    };      
}.start();

new Thread("Thread#2"){
    public void run(){
        Log.d(TAH,"Thread#2"+mBooleanThreadLocal.get());
    };      
}.start();

上面的代码运行后,我们会发现,每一个线程的值都是不同的,即使他们访问的是同意个ThreadLocal对象。

那么我们接下来会在之后分析源码,为什么他会不一样。现在我们跳回prepare()方法那一步,loop()方法源码贴上

 1 public static void loop() {
 2         final Looper me = myLooper();
 3         if (me == null) {
 4             throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
 5         }
 6         final MessageQueue queue = me.mQueue;
 7 
 8         // Make sure the identity of this thread is that of the local process,
 9         // and keep track of what that identity token actually is.
10         Binder.clearCallingIdentity();
11         final long ident = Binder.clearCallingIdentity();
12 
13         for (;;) {
14             Message msg = queue.next(); // might block
15             if (msg == null) {
16                 // No message indicates that the message queue is quitting.
17                 return;
18             }
19 
20             // This must be in a local variable, in case a UI event sets the logger
21             Printer logging = me.mLogging;
22             if (logging != null) {
23                 logging.println(">>>>> Dispatching to " + msg.target + " " +
24                         msg.callback + ": " + msg.what);
25             }
26 
27             msg.target.dispatchMessage(msg);
28 
29             if (logging != null) {
30                 logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
31             }
32 
33             // Make sure that during the course of dispatching the
34             // identity of the thread wasn't corrupted.
35             final long newIdent = Binder.clearCallingIdentity();
36             if (ident != newIdent) {
37                 Log.wtf(TAG, "Thread identity changed from 0x"
38                         + Long.toHexString(ident) + " to 0x"
39                         + Long.toHexString(newIdent) + " while dispatching to "
40                         + msg.target.getClass().getName() + " "
41                         + msg.callback + " what=" + msg.what);
42             }
43 
44             msg.recycleUnchecked();
45         }
46     }

首先loop()方法,获得这个线程的Looper,若没有抛出异常。再获得新建的Messagequeue,在这里我们有必要补充一下Messagequeue的next()方法。

  1   Message next() {
  2         // Return here if the message loop has already quit and been disposed.
  3         // This can happen if the application tries to restart a looper after quit
  4         // which is not supported.
  5         final long ptr = mPtr;
  6         if (ptr == 0) {
  7             return null;
  8         }
  9 
 10         int pendingIdleHandlerCount = -1; // -1 only during first iteration
 11         int nextPollTimeoutMillis = 0;
 12         for (;;) {
 13             if (nextPollTimeoutMillis != 0) {
 14                 Binder.flushPendingCommands();
 15             }
 16 
 17             nativePollOnce(ptr, nextPollTimeoutMillis);
 18 
 19             synchronized (this) {
 20                 // Try to retrieve the next message.  Return if found.
 21                 final long now = SystemClock.uptimeMillis();
 22                 Message prevMsg = null;
 23                 Message msg = mMessages;
 24                 if (msg != null && msg.target == null) {
 25                     // Stalled by a barrier.  Find the next asynchronous message in the queue.
 26                     do {
 27                         prevMsg = msg;
 28                         msg = msg.next;
 29                     } while (msg != null && !msg.isAsynchronous());
 30                 }
 31                 if (msg != null) {
 32                     if (now < msg.when) {
 33                         // Next message is not ready.  Set a timeout to wake up when it is ready.
 34                         nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
 35                     } else {
 36                         // Got a message.
 37                         mBlocked = false;
 38                         if (prevMsg != null) {
 39                             prevMsg.next = msg.next;
 40                         } else {
 41                             mMessages = msg.next;
 42                         }
 43                         msg.next = null;
 44                         if (DEBUG) Log.v(TAG, "Returning message: " + msg);
 45                         msg.markInUse();
 46                         return msg;
 47                     }
 48                 } else {
 49                     // No more messages.
 50                     nextPollTimeoutMillis = -1;
 51                 }
 52 
 53                 // Process the quit message now that all pending messages have been handled.
 54                 if (mQuitting) {
 55                     dispose();
 56                     return null;
 57                 }
 58 
 59                 // If first time idle, then get the number of idlers to run.
 60                 // Idle handles only run if the queue is empty or if the first message
 61                 // in the queue (possibly a barrier) is due to be handled in the future.
 62                 if (pendingIdleHandlerCount < 0
 63                         && (mMessages == null || now < mMessages.when)) {
 64                     pendingIdleHandlerCount = mIdleHandlers.size();
 65                 }
 66                 if (pendingIdleHandlerCount <= 0) {
 67                     // No idle handlers to run.  Loop and wait some more.
 68                     mBlocked = true;
 69                     continue;
 70                 }
 71 
 72                 if (mPendingIdleHandlers == null) {
 73                     mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
 74                 }
 75                 mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
 76             }
 77 
 78             // Run the idle handlers.
 79             // We only ever reach this code block during the first iteration.
 80             for (int i = 0; i < pendingIdleHandlerCount; i++) {
 81                 final IdleHandler idler = mPendingIdleHandlers[i];
 82                 mPendingIdleHandlers[i] = null; // release the reference to the handler
 83 
 84                 boolean keep = false;
 85                 try {
 86                     keep = idler.queueIdle();
 87                 } catch (Throwable t) {
 88                     Log.wtf(TAG, "IdleHandler threw exception", t);
 89                 }
 90 
 91                 if (!keep) {
 92                     synchronized (this) {
 93                         mIdleHandlers.remove(idler);
 94                     }
 95                 }
 96             }
 97 
 98             // Reset the idle handler count to 0 so we do not run them again.
 99             pendingIdleHandlerCount = 0;
100 
101             // While calling an idle handler, a new message could have been delivered
102             // so go back and look again for a pending message without waiting.
103             nextPollTimeoutMillis = 0;
104         }
105     }

从24-30我们可以看到,他遍历了整个queue找到msg,若是msg为null,我们可以看到50,他把nextPollTimeoutMillis = -1;实际上是等待enqueueMessage的nativeWake来唤醒。较深的源码涉及了native层代码,有兴趣可以研究一下。简单来说next()方法,在有消息是会返回这条消息,若没有,则阻塞在这里。

我们回到loop()方法27msg.target.dispatchMessage(msg);我们看代码

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

msg.target实际上就是发送这条消息的Handler,我们可以看到它将msg交给dispatchMessage(),最后调用了我们熟悉的方法handleMessage(msg);

 

三、总结

  到目前为止,我们了解了android的消息机制流程,但它实际上还涉及了深层的native层方法,这里有一篇博客专门讲解这个转载一下

http://www.cnblogs.com/angeldevil/p/3340644.html。

 

posted @ 2017-02-01 11:51  YRLeaner  阅读(472)  评论(0编辑  收藏  举报