图优化

1.图优化的流程

  1. 选择你想要的图里的节点与边的类型,确定它们的参数化形式;
  2. 往图里加入实际的节点和边;
  3. 选择初值,开始迭代;
  4. 每一步迭代中,计算对应于当前估计值的雅可比矩阵和海塞矩阵;
  5. 求解稀疏线性方程 H * detaX = -b,得到梯度方向;
  6. 继续用GN或LM进行迭代。如果迭代结束,返回优化值。

  实际上,g2o能帮你做好第3-6步,你要做的只是前两步而已。

 

2.顶点和边

  • 在图中,以顶点表示优化变量,以边表示观测方程。
  两个顶点 一条边边
机器人两个Pose之间的变换 两个pose

变换关系:

detaT = T1 * inv(T2)

机器人在某个Pose处用激光测量到了某个空间点

一个2D Pose[x,y,theta];

一个空间点(lamda_x,lamda_y)

观测方程:

机器人在某个Pose处用相机观测到了某个空间点,得到了它的像素坐标

一个像素坐标 Pose = [u; v]

一个空间点x = (x,y,z)

z = [u; v] = C (R * x + t), C为相机内参
  •  优化目标

 

 

 

e(x,k) 是x符合z的程度的一个度量,越小越符合,反之越不符合。对式进行求导和一阶泰勒展开,得到其极值为0的方程:

 

 

 其中,deta X即为梯度。

  • 可解性解释

 

 只有和xk顶点相连的边,出现了非零值。相应的二阶导矩阵H中,大部分也是零元素。这种稀疏性能很好地帮助我们快速求解上面的线性方程。稀疏矩阵代数库:SBA、PCG、CSparse、Cholmod等等

  •  引入核函数的原因,是因为SLAM中可能给出错误的边。如cauchy核,huber核等等。
  • 问题: 四维变换矩阵T或者三维旋转矩R无法进行加减和求导:李群和李代数变换后可以,再变换回来。

 

2.g2o库

 

 3.应用

参考:https://www.cnblogs.com/gaoxiang12/p/5304272.html

 

  1. 定义顶点
  2. 定义边
  3. 配置BlockSolver(LinerSolverType)
  4. 配置OptimizationAlgorithm
  5. 配置Optimizer
  6. 添加顶点
  7. 添加边
  8. 启动优化

 4.解释

4.1 顶点(Vertex)

VertexSE2 : publicBaseVertex< 3, SE2> //2D pose Vertex, (x,y,theta)

VertexSE3 : publicBaseVertex< 6, Isometry3> //6d vector (x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion)

VertexPointXY : publicBaseVertex< 2, Vector2>

VertexPointXYZ : publicBaseVertex< 3, Vector3>

VertexSBAPointXYZ : publicBaseVertex< 3, Vector3>

// SE3 Vertex parameterized internally with a transformation matrix and externally with its exponential map//指数映射关系
VertexSE3Expmap : publicBaseVertex< 6, SE3Quat>//类型内部使用的其实是四元数,不是李代数//g2o定义的相机位姿类型:SE3Quat

// SBACam Vertex, (x,y,z,qw,qx,qy,qz),(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
// qw is assumed to be positive, otherwise there is an ambiguity in qx,qy,qz as a rotation
VertexCam : publicBaseVertex< 6, SBACam>

// Sim3 Vertex, (x,y,z,qw,qx,qy,qz),7d vector,(x,y,z,qx,qy,qz) (note that we leave out the w part of the quaternion.
VertexSim3Expmap : publicBaseVertex< 7, Sim3> 

重新定义顶点一般需要考虑重写如下函数:

virtual bool read(std::istream& is);

virtual bool write(std::ostream& os) const;
//分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以

//顶点更新函数。非常重要的一个函数,主要用于优化过程中增量△x 的计算。我们根据增量方
//程计算出增量之后,就是通过这个函数对估计值进行调整的,因此这个函数的内容一定要重视。
virtual void oplusImpl (const number_t* update);


//顶点重置函数,设定被优化变量的原始值。
virtual void setToOriginImpl(); 

 

 

 

4.2 边(Edge)

BaseUnaryEdge,BaseBinaryEdge,BaseMultiEdge 分别表示一元边,两元边,多元边。一条边只连接一个顶点,两元边理解为一条边连接两个顶点;多元边的一条边可以连接多个(3个以上)顶点。

BaseBinaryEdge<2, Vector2D, VertexSBAPointXYZ, VertexSE3Expmap>
D, //测量值的维度 E, //测量值的数据类型 VertexXi, //顶点的类型 VertexXj //顶点的类型

自定义边

virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;  //分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以
virtual void computeError();          //非常重要,是使用当前顶点的值计算的测量值与真实的测量值之间的误差
virtual void linearizeOplus();        //非常重要,是在当前顶点的值下,该误差对优化变量的偏导数,也就是我们说的Jacobian
_measurement:                 //存储观测值
_error:                    //存储computeError() 函数计算的误差
_vertices[]:                //存储顶点信息,比如二元边的话,_vertices[] 的大小为2,存储顺序和调用setVertex(int, vertex) //是设定的int 有关(0 或1)
setId(int):                //来定义边的编号(决定了在H矩阵中的位置)
setMeasurement(type)           //函数来定义观测值
setVertex(int, vertex)         //来定义顶点
setInformation()            //来定义协方差矩阵的逆 

 

 

 

 

总结:

重要参考:https://www.cnblogs.com/gaoxiang12/p/5244828.html

https://www.aiimooc.com/mall/preshow-htm-itemid-382.html

https://blog.csdn.net/hzwwpgmwy/article/details/79884070 

posted @ 2020-06-24 20:14  寒江小筑  阅读(1270)  评论(0编辑  收藏  举报