233. Number of Digit One
题目:
Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.
For example:
Given n = 13,
Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13.
链接: http://leetcode.com/problems/number-of-digit-one/
题解:
又是数学题,主要思路是用递归来做。还有一些别的解法,二刷的时候争取理解最优解。
下面我们来一步步分析:
- n < 1时,结果为0
- 1 <= n < 10时,结果为1 假定n = 312,我们把这个计算过程分解为几个步骤:
- (1 ~ 99), 结果为 countDigitOne(99)
- (100 ~ 199), 结果为 100 + countDigitOne(99)
- (200 ~ 299), 结果为countDigitOne(99)
- (300 ~ 312), 结果为countDigitOne(12)
- 假定n = 112, 我们也把这个计算过程分解一下:
- (1 ~ 99), 结果为 countDigitOne(99)
- (100 ~ 112), 结果为 112 - 100 + 1 + countDigitOne(12)
- 由此我们可以推出通项公式
Time Complexity - O(log10n), Space Complexity - O(log10n)
public class Solution { public int countDigitOne(int n) { if (n < 1) return 0; if (n < 10) return 1; int baseInTen = (int)Math.pow(10, String.valueOf(n).length() - 1); int highestDigit = n / baseInTen; // get the highest digit of n if(highestDigit == 1) return countDigitOne(baseInTen - 1) + (n - baseInTen + 1) + countDigitOne(n % baseInTen); else return highestDigit * countDigitOne(baseInTen - 1) + baseInTen + countDigitOne(n % baseInTen); } }
Reference:
https://leetcode.com/discuss/44281/4-lines-o-log-n-c-java-python
https://leetcode.com/discuss/44279/clean-c-code-of-log10-complexity-with-detailed-explanation
https://leetcode.com/discuss/44314/accepted-solution-using-counting-principle-with-explanation
https://leetcode.com/discuss/44465/my-ac-java-solution-with-explanation
https://leetcode.com/discuss/44617/my-recursion-implementation
https://leetcode.com/discuss/47774/0ms-recursive-solution-in-c-8-line-code
https://leetcode.com/discuss/46366/ac-short-java-solution
https://leetcode.com/discuss/64604/my-simple-and-understandable-java-solution
https://leetcode.com/discuss/64962/java-python-one-pass-solution-easy-to-understand
https://leetcode.com/discuss/54107/0-ms-recursive-solution
https://leetcode.com/discuss/58868/easy-understand-java-solution-with-detailed-explaination