219. Contains Duplicate II
题目:
Given an array of integers and an integer k, find out whether there are two distinct indices i and j in the array such that nums[i] = nums[j] and the difference between i and jis at most k.
链接: http://leetcode.com/problems/contains-duplicate-ii/
题解:
用HashMap来保存(nums[i],i) pair,假如存在相同key并且 i - map.get(key) <= k,返回true。否则遍历完毕以后返回false.
Time Complexity - O(n), Space Complexity - O(n)
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if(nums == null || nums.length == 0) return false; Map<Integer, Integer> map = new HashMap<>(); for(int i = 0; i < nums.length; i++) { if(map.containsKey(nums[i])) { if(i - map.get(nums[i]) <= k) return true; } map.put(nums[i], i); } return false; } }
二刷:
跟一刷一样,使用一个Map来保存数字以及数字的index,然后进行比较。假如相同并且 i - map.get(nums[i]) <= k,那么我们返回true。否则遍历完毕以后返回false.
Java:
Time Complexity - O(n), Space Complexity - O(n)
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if (nums == null || nums.length == 0) { return false; } Map<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < nums.length; i++) { if (map.containsKey(nums[i]) && (i - map.get(nums[i]) <= k) ) { return true; } map.put(nums[i], i); } return false; } }
三刷:
方法还是和一刷,二刷一样,用一个HashMap来保存元素和位置。这里最好给HashMap设定一个初始的大小来避免resizing带来的cost。最大的test case好像是30000,我们设置30000 / 0.75 = 40000左右就可以了。
Java:
Time Complexity - O(n), Space Complexity - O(n)
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if (nums == null || k <= 0) { return false; } Map<Integer, Integer> map = new HashMap<>(41000); for (int i = 0; i < nums.length; i++) { if (map.containsKey(nums[i]) && i - map.get(nums[i]) <= k) { return true; } map.put(nums[i], i); } return false; } }
使用Set以及sliding window。
- 我们维护一个size为k的HashSet
- 遍历整个数组,每次先判断是否有重复,有重复的话我们直接返回true
- 当size > k的时候,这时候size() = k + 1。 我们要把距离当前元素最远的一个元素,即第i - k个元素移出set,继续维护set的size = k
- 全部遍历完毕以后返回false。
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if (nums == null || k <= 0) { return false; } Set<Integer> set = new HashSet<>(); for (int i = 0; i < nums.length; i++) { if (!set.add(nums[i])) { return true; } if (set.size() > k) { set.remove(nums[i - k]); } } return false; } }
Update:
利用HashMap的put。创建map的时候利用load factor = 0.75,我们建立一个比nums.length略大一些的map就能节约resizing的时间,但这也是空间换时间了。
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if (nums == null || k <= 0) return false; Map<Integer, Integer> map = new HashMap<>((int)(nums.length / 0.8)); for (int i = 0; i < nums.length; i++) { if (!map.containsKey(nums[i])) map.put(nums[i], i); else if (i - map.put(nums[i], i) <= k) return true; } return false; } }
Update:重写了使用set的Sliding Window方法
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if (nums == null || k <= 0) return false; Set<Integer> set = new HashSet<>((int)(nums.length / 0.8)); for (int i = 0; i < nums.length; i++) { if (!set.add(nums[i])) return true; if (set.size() > k) set.remove(nums[i - k]); } return false; } }
Update: SouthPenguin的Sliding window方法。 最优解。
Worst case: Time Complexity - O(n), Space Complexity - O(n)
public class Solution { public boolean containsNearbyDuplicate(int[] nums, int k) { if (nums == null || k <= 0) return false; Set<Integer> set = new HashSet<>((int)(nums.length / 0.8)); for (int i = 0; i < nums.length; i++) { if (i > k) set.remove(nums[i - k - 1]); if (!set.add(nums[i])) return true; } return false; } }
Reference:
https://leetcode.com/discuss/38445/simple-java-solution