211. Add and Search Word - Data structure design
题目:
Design a data structure that supports the following two operations:
void addWord(word) bool search(word)
search(word) can search a literal word or a regular expression string containing only letters a-z
or .
. A .
means it can represent any one letter.
For example:
addWord("bad") addWord("dad") addWord("mad") search("pad") -> false search("bad") -> true search(".ad") -> true search("b..") -> true
Note:
You may assume that all words are consist of lowercase letters a-z
.
链接: http://leetcode.com/problems/add-and-search-word-data-structure-design/
题解:
设计一个Data Structure来search和add单词。这道题我们又可以用一个R-Way Trie来完成。 像JQuery里面的Auto-complete功能其实就可以用R-Way Trie based method来设计和编程。注意当字符为"."的时候我们要loop当前节点的全部26个子节点,这里要用一个DFS。
Time Complexity - O(n), Space Complextiy - O(26n)。
public class WordDictionary { private TrieNode root = new TrieNode(); private class TrieNode { private final int R = 26; // radix = 26 public TrieNode[] next; public boolean isWord; public TrieNode() { next = new TrieNode[R]; } } // Adds a word into the data structure. public void addWord(String word) { if(word == null || word.length() == 0) return; TrieNode node = root; int d = 0; while(d < word.length()) { char c = word.charAt(d); if(node.next[c - 'a'] == null) node.next[c - 'a'] = new TrieNode(); node = node.next[c - 'a']; d++; } node.isWord = true; } // Returns if the word is in the data structure. A word could // contain the dot character '.' to represent any one letter. public boolean search(String word) { if(word == null || word.length() == 0) return false; TrieNode node = root; int d = 0; return search(node, word, 0); } private boolean search(TrieNode node, String word, int d) { if(node == null) return false; if(d == word.length()) return node.isWord; char c = word.charAt(d); if(c == '.') { for(TrieNode child : node.next) { if(child != null && search(child, word, d + 1)) return true; } return false; } else { return search(node.next[c - 'a'], word, d + 1); } } } // Your WordDictionary object will be instantiated and called as such: // WordDictionary wordDictionary = new WordDictionary(); // wordDictionary.addWord("word"); // wordDictionary.search("pattern");
二刷:
方法和一刷一样,主要使用Trie。addWord的时候还是使用和Trie的insert一样的的代码。 Search的时候因为有一个通配符'.',所以我们要用dfs搜索节点的26个子节点。
假如使用Python的话可以不用Trie,直接用dict来做。
Java:
Time Complexity: addWord - O(L) , search - O(26L), Space Complexity - O(26L) 这里 L是单词的平均长度。
public class WordDictionary { TrieNode root = new TrieNode(); // Adds a word into the data structure. public void addWord(String word) { if (word == null) return; TrieNode node = this.root; int d = 0; while (d < word.length()) { int index = word.charAt(d) - 'a'; if (node.next[index] == null) node.next[index] = new TrieNode(); node = node.next[index]; d++; } node.isWord = true; } // Returns if the word is in the data structure. A word could // contain the dot character '.' to represent any one letter. public boolean search(String word) { return search(word, root, 0); } private boolean search(String word, TrieNode node, int depth) { if (node == null) return false; if (depth == word.length()) return node.isWord; char c = word.charAt(depth); if (c != '.') { return search(word, node.next[c - 'a'], depth + 1); } else { for (TrieNode nextNode : node.next) { if (search(word, nextNode, depth + 1)) return true; } return false; } } private class TrieNode { TrieNode[] next; int R = 26; boolean isWord; public TrieNode() { this.next = new TrieNode[R]; } } } // Your WordDictionary object will be instantiated and called as such: // WordDictionary wordDictionary = new WordDictionary(); // wordDictionary.addWord("word"); // wordDictionary.search("pattern");
Reference:
https://leetcode.com/discuss/35878/java-hashmap-backed-trie
https://leetcode.com/discuss/35928/my-simple-and-clean-java-code
https://leetcode.com/problems/implement-trie-prefix-tree/
https://leetcode.com/discuss/69963/python-168ms-beat-100%25-solution