204. Count Primes

题目:

Description:

Count the number of prime numbers less than a non-negative number, n.

Credits:
Special thanks to @mithmatt for adding this problem and creating all test cases.

Show Hint 

     

    Hide Tags
     Hash Table Math 

    链接: http://leetcode.com/problems/count-primes/

    题解:

    求小于n素数。正好前几天PKU的Java课上讲到埃式筛法,一下就想到了它。先建立一个数组,假定所有大于1小于n的数都mark为素数。之后从第一个素数2开始,mark这个素数的倍数为非素数。注意边界。时间复杂度等于(n/2+n/3+n/5...+n/比n小的最大素数) = n*(小于n的所有素数倒数的和) = O(n * log(logn))

    Time Complexity - O(nloglogn), Space Complexity - O(n)。                                 

    public class Solution {
        public int countPrimes(int n) {
            if(n < 2)
                return 0;
            boolean[] dp = new boolean[n];
            Arrays.fill(dp, 2, n, true);
            int result = n - 2;
            
            for(int i = 2; i * i < n; i++){
                if(dp[i]){                                       //if i is a prime
                    for(int j = i; i * j < n; j++){
                        if(dp[i * j]){                           //then i * j is not a prime, set dp[i * j] to false
                            dp[i * j] = false;
                            result--;
                        }
                    }
                }
            }
            
            return result;
        }
    }

     

    Update:

    注意Arrays.fill假如给定start index和end index的话是前闭后开区间。

    sieve of eratosthenes

    public class Solution {
        public int countPrimes(int n) {
            if(n < 2)
                return 0;
            boolean[] isPrime = new boolean[n];
            Arrays.fill(isPrime, 2, n, true);
            int result = n - 2;
            
            for(int i = 2; i * i < n; i++) {
                if(isPrime[i]) {
                    for(int j = i; i * j < n; j++) {
                        if(isPrime[i * j]) {
                            isPrime[i * j] = false;
                            result--;    
                        }
                    }
                }
            }
            
            return result;
        }
    }

     

    二刷: 

    依然使用 Sieve of Eratosthenes。要注意题目说的是比n小的质数,所以我们只需要建立一个size n的数组就可以了。

    Java:

    Time Complexity - O(nloglogn), Space Complexity - O(n)

    public class Solution {
        public int countPrimes(int n) {
            if (n < 3) {
                return 0;
            }
            boolean[] isPrime = new boolean[n];
            Arrays.fill(isPrime, 2, n, true);
            int res = n - 2;    // no 0 and 1
            for (int i = 2; i * i < n; i++) {
                if (isPrime[i]) {
                    for (int j = i; j * i < n; j++) {
                        if (isPrime[i * j]) {
                            isPrime[i * j] = false;
                            res--;
                        }
                    }
                }
            }
            return res;
        }
    }

     

    三刷:

    Java:

    public class Solution {
        public int countPrimes(int n) {
            if (n < 3) return 0;
            boolean[] nums = new boolean[n];
            Arrays.fill(nums, 2, n, true);
            int count = n - 2;
            
            for (int i = 2; i * i < n; i++) {
                if (nums[i]) {
                    for (int j = i; i * j < n; j++) {
                        if (nums[i * j]) {
                            nums[i * j] = false;
                            count--;
                        }    
                    }
                }
            }
            
            return count;
        }
    }

     

     

    Reference:

    http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes 

    https://leetcode.com/discuss/81779/12-ms-java-solution-modified-from-the-hint-method-beats-99-95%25

    posted @ 2015-05-11 03:48  YRB  阅读(834)  评论(0编辑  收藏  举报