62. Unique Paths
题目:
A robot is located at the top-left corner of a m x ngrid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
链接: http://leetcode.com/problems/unique-paths/
题解:
dp的经典问题,每次向右或向下走一步。第一行或者第一列走到头只有一种方法,所以初始化为1,转移方程是dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
Time Complexity O(m * n), Space Complexity O(m * n)。
public class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i ++)
dp[i][0] = 1;
for(int j = 0; j < n; j ++)
dp[0][j] = 1;
for(int i = 1; i < m; i ++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
Update:
public class Solution { public int uniquePaths(int m, int n) { if(m == 0 || m == 0) return 0; int[][] dp = new int[m][n]; for(int i = 0; i < m; i++) // initialize first column dp[i][0] = 1; for(int j = 1; j < n; j++) // initialize first row dp[0][j] = 1; for(int i = 1; i < m; i++) { for(int j = 1; j < n; j++) { dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; } }
二刷:
Java:
经典的dp,据说还可以用Math来做。我们还是使用dp。
2D DP:
建立一个m x n矩阵,初始化第一条边和第一列为1,然后利用转移方程res[i][j] = res[i - 1][j] + res[i][j - 1],最后返回res[m - 1][n - 1]
Time Complexity - O(mn), Space Complexity - O(mn)
public class Solution { public int uniquePaths(int m, int n) { if (m < 0 || n < 0) { return 0; } int[][] res = new int[m][n]; for (int i = 0; i < m; i++) { res[i][0] = 1; } for (int j = 1; j < n; j++) { res[0][j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { res[i][j] = res[i - 1][j] + res[i][j - 1]; } } return res[m - 1][n - 1]; } }
1D DP with rolling array:
对这种简单的DP,一般我们可以用rolling array来减少空间复杂度。我们建立一个长度为n的array,先初始化其中每个元素的值为1,然后在遍历m x n的时候,转移方程简化为 res[j] += res[j - 1], 还是之前res[i][j]左边和上边的元素。这样节约了一点空间。
Time Complexity - O(mn), Space Complexity - O(n)
public class Solution { public int uniquePaths(int m, int n) { if (m < 0 || n < 0) { return 0; } int[] res = new int[n]; for (int j = 0; j < n; j++) { res[j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { res[j] += res[j - 1]; } } return res[n - 1]; } }
三刷:
Java:
2D dp:
public class Solution { public int uniquePaths(int m, int n) { if (m < 0 || n < 0) return 0; int[][] dp = new int[m][n]; for (int i = 0; i < m; i++) dp[i][0] = 1; for (int j = 1; j < n; j++) dp[0][j] = 1; for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; } }
Rolling array 1:
public class Solution { public int uniquePaths(int m, int n) { if (m < 0 || n < 0) return 0; int[] dp = new int[n]; for (int j = 0; j < n; j++) dp[j] = 1; for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[j] += dp[j - 1]; } } return dp[n - 1]; } }
Rolling array2: 现在才能领会到为什么我们有的时候建立dp数组要用int[] dp = new int[n + 1]。 多增加一个长度的话是为了写的时候不用对第一行赋初值,看起来比较简练,但其实时间复杂度还是一样的。
public class Solution { public int uniquePaths(int m, int n) { if (m < 0 || n < 0) return 0; int[] dp = new int[n + 1]; dp[0] = 1; for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { dp[j] += dp[j - 1]; } } return dp[n - 1]; } }
Reference:
https://leetcode.com/discuss/9110/my-ac-solution-using-formula
https://leetcode.com/discuss/47829/math-solution-o-1-space