DARTS代码分析(Pytorch)
最近在看DARTS的代码,有一个operations.py的文件,里面是对各类点与点之间操作的方法。
OPS = { 'none': lambda C, stride, affine: Zero(stride), 'avg_pool_3x3': lambda C, stride, affine: PoolBN('avg', C, 3, stride, 1, affine=affine), 'max_pool_3x3': lambda C, stride, affine: PoolBN('max', C, 3, stride, 1, affine=affine), 'skip_connect': lambda C, stride, affine: \ Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine), 'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine), 'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine), 'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine), 'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine), # 5x5 'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine), # 9x9 'conv_7x1_1x7': lambda C, stride, affine: FacConv(C, C, 7, stride, 3, affine=affine) }
首先定义10个操作,依次解释:
-
class PoolBN(nn.Module): """ AvgPool or MaxPool - BN """ def __init__(self, pool_type, C, kernel_size, stride, padding, affine=True): """ Args: pool_type: 'max' or 'avg' """ super().__init__() if pool_type.lower() == 'max': self.pool = nn.MaxPool2d(kernel_size, stride, padding) elif pool_type.lower() == 'avg': self.pool = nn.AvgPool2d(kernel_size, stride, padding, count_include_pad=False) else: raise ValueError() self.bn = nn.BatchNorm2d(C, affine=affine) def forward(self, x): out = self.pool(x) out = self.bn(out) return out
这是池化函数,有最大池化和平均池化方法,count_include_pad=False表示不把填充的0计算进去
-
class Identity(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x
这个表示skip conncet
-
class FactorizedReduce(nn.Module): """ Reduce feature map size by factorized pointwise(stride=2). """ def __init__(self, C_in, C_out, affine=True): super().__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False) self.conv2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False) self.bn = nn.BatchNorm2d(C_out, affine=affine) def forward(self, x): x = self.relu(x) out = torch.cat([self.conv1(x), self.conv2(x[:, :, 1:, 1:])], dim=1) out = self.bn(out) return out
这个表示将特征图大小变为原来的一半
-
class DilConv(nn.Module): """ (Dilated) depthwise separable conv ReLU - (Dilated) depthwise separable - Pointwise - BN If dilation == 2, 3x3 conv => 5x5 receptive field 5x5 conv => 9x9 receptive field """ def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True): super().__init__() self.net = nn.Sequential( nn.ReLU(), nn.Conv2d(C_in, C_in, kernel_size, stride, padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x): return self.net(x)
深度可分离卷积,groups=C_in,表示把输入特种图分成C_in(输入通道数)那么多组,然后加C_out(输出通道数)1*1的卷积,这样可以对每个通道单独提取特征,同时降低了参数量和计算量。
-
class SepConv(nn.Module): """ Depthwise separable conv DilConv(dilation=1) * 2 """ def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super().__init__() self.net = nn.Sequential( DilConv(C_in, C_in, kernel_size, stride, padding, dilation=1, affine=affine), DilConv(C_in, C_out, kernel_size, 1, padding, dilation=1, affine=affine) ) def forward(self, x): return self.net(x)
深度可分离卷积,由两个上面的深度分组卷积组成
-
class FacConv(nn.Module): """ Factorized conv ReLU - Conv(Kx1) - Conv(1xK) - BN """ def __init__(self, C_in, C_out, kernel_length, stride, padding, affine=True): super().__init__() self.net = nn.Sequential( nn.ReLU(), nn.Conv2d(C_in, C_in, (kernel_length, 1), stride, padding, bias=False), nn.Conv2d(C_in, C_out, (1, kernel_length), stride, padding, bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x): return self.net(x)
这个表示长方形的卷积,增加了一点特征图的长和宽
-
class Zero(nn.Module): def __init__(self, stride): super().__init__() self.stride = stride def forward(self, x): if self.stride == 1: return x * 0. # re-sizing by stride return x[:, :, ::self.stride, ::self.stride] * 0.
这个表示把特种图的输出变为全是0,但特征图的大小会根据stride而改变
人生苦短,何不用python