题意
题目链接
分析
- 容易想到将整幅图黑白染色,然后位于黑色格子的管道和位于白色格子的管道要一一匹配。
- 将每个点拆成五个点,其中四个点表示格子朝上下左右四个方向的管道,一个用来控制流量。
- 发现旋转 \(90°\) 这个操作在 可旋转的的管道类型中 都满足可以用 某个方向的管道的位置转移 来表示。
- 所以把对应方向的管道连边,费用设置成 1 来表示一次旋转即可。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 2007, inf = 0x3f3f3f3f;
int n, m, gg;
int id[5][N][N];
int dr[] = {-1, 0, 1, 0}, dc[] = {0, 1, 0, -1};
namespace MCMF {
const int Nd = N * 5;
int edc = 1, st, ed, ndc;
int head[Nd], cur[Nd], dis[Nd], vis[Nd];
struct edge {
int lst, to, cap, flow, c;
}e[Nd * 20];
void Add(int a, int b, int c, int d) {
e[++edc] = (edge){ head[a], b, c, 0, d}, head[a] = edc;
e[++edc] = (edge){ head[b], a, 0, 0, -d}, head[b] = edc;
}
void Add2(int a, int b, int c, int d) {
e[++edc] = (edge){ head[a], b, c, 0, d}, head[a] = edc;
e[++edc] = (edge){ head[b], a, 0, 0, -d}, head[b] = edc;
e[++edc] = (edge){ head[b], a, c, 0, d}, head[b] = edc;
e[++edc] = (edge){ head[a], b, 0, 0, -d}, head[a] = edc;
}
bool spfa() {
queue<int>Q;
rep(i, 1, ndc) {
cur[i] = head[i];
dis[i] = inf;
}
dis[st] = 0;
Q.push(st);
while(!Q.empty()) {
int u = Q.front();Q.pop();
vis[u] = 0;
go(u)if(e[i].cap - e[i].flow > 0 && Min(dis[v], dis[u] + e[i].c)) {
if(!vis[v]) vis[v] = 1, Q.push(v);
}
}
return dis[ed] != inf;
}
typedef pair<int, int> pii;
pii dfs(int u, int b) {
if(u == ed || !b) return make_pair(b, 0);
pii res, f;
vis[u] = 1;
for(int &i = cur[u], v = e[i].to; i; i = e[i].lst, v = e[i].to)
if(e[i].cap - e[i].flow > 0 && dis[u] + e[i].c == dis[v] && !vis[v]){
f = dfs(v, min(b, e[i].cap - e[i].flow));
res.first += f.first;
res.second += f.second + e[i].c * f.first;
b -= f.first, e[i].flow += f.first, e[i ^ 1].flow -= f.first;
if(!b) break;
}
vis[u] = 0;
return res;
}
int MincostMaxflow() {
pii res = make_pair(0, 0);
while(spfa()) {
pii tmp = dfs(st, inf);
res.second += tmp.second;
res.first += tmp.first;
}
if(res.first * 2 != gg) return -1;
return res.second;
}
}
bool inside(int r, int c) {
return r && c && r <= n && c <= m;
}
int main() {
using namespace MCMF;
n = gi(), m = gi();
rep(i, 1, n) rep(j, 1, m) rep(d, 0, 4) id[d][i][j] = ++ndc;
st = ++ndc, ed = ++ndc;
rep(i, 1, n) rep(j, 1, m) {
int x = gi(), cnt = 0;
if((i + j) & 1) {
rep(d, 0, 3) if(x >> d & 1) Add(id[4][i][j], id[d][i][j], 1, 0), ++cnt;
rep(d, 0, 3) {
int tr = i + dr[d], tc = j + dc[d];
if(inside(tr, tc)) Add(id[d][i][j], id[(d + 2) % 4][tr][tc], 1, 0);
}
Add(st, id[4][i][j], cnt, 0);
gg += cnt;
}else {
rep(d, 0, 3) if(x >> d & 1) Add(id[d][i][j], id[4][i][j], 1, 0), ++cnt;
Add(id[4][i][j], ed, cnt, 0);
gg += cnt;
}
if(cnt ^ 2 || (x & 5) || (x & 10)) {
if(cnt == 1 || cnt == 3) {
rep(d, 0, 3)
Add2(id[d][i][j], id[(d + 1) % 4][i][j], 1, 1);
}
if(cnt == 2) {
rep(d, 0, 3)
Add2(id[d][i][j], id[(d + 2) % 4][i][j], 1, 1);
}
}
}
printf("%d\n", MincostMaxflow());
return 0;
}