高精度除法【c++实现】超详细讲解
分类
高精度算法分为两种,高精除以低精和高精除以高精。不要看都是除法,就认为原理类似,其实是有很大差距的。让我们一起来学习吧!
有句话说在前面,如果除数等于0,就不要算了,不成立。(如果你忘了这个知识,小学数学老师饶不了你)
高精除以低精
高精度除低精度,原理是模拟竖式除法,和高精度其他算法一样都可以手动计算来感受一下实现方法。下面来一个较为简单的例子:1532 ÷ 21 = 72......20
步骤
第一步:
yu = 1
ans | 1/21 = 0 | |||
a | 2 | 3 | 5 | 1 |
b | 21 |
第二步:
yu = 15
ans | 15/21 = 0 | 0 | ||
a | 2 | 3 | 5 | 1 |
b | 21 |
第三步:
yu = 153
ans | 153/21=7 | 0 | 0 | |
a | 2 | 3 | 5 | 1 |
b | 21 |
第四步:
yu = 62
ans | 62/21 = 2 | 7 | 0 | 0 |
a | 2 | 3 | 5 | 1 |
b | 21 |
第五步:
yu = 20
ans | 2 | 7 | 0 | 0 |
a | 2 | 3 | 5 | 1 |
b | 21 |
核心代码
//核心代码
for(int i = lena - 1; i >= 0; i--)
{
yu = yu * 10 + a[i];//模拟竖式除法中的落位
result[i] = yu / b;
yu %= b;
}
完整代码
#pragma GCC optimize(3)
#pragma GCC target("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
string a1;
int b, yu;//b为除数
int a[N], result[N];//a为被除数,result为结果
int main()
{
cin >> a1 >> b;
int lena = a1.size();
//倒序存储
for(int i = 0; i < lena; i++)
{
a[i] = a1[lena - i - 1] - '0';
}
//核心代码
for(int i = lena - 1; i >= 0; i--)
{
yu = yu * 10 + a[i];//模拟竖式除法中的落位
result[i] = yu / b;
yu %= b;
}
//去除前缀多余的0
int tmp = lena;
while(result[tmp] == 0 && tmp > 0) tmp--;
//倒序输出
for(int i = tmp; i >= 0; i--) cout << result[i];
cout << endl;
cout << yu << endl;
return 0;
}