"""
Created on 2021/1/4 20:25.
@Author: anne
"""
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.layers import UpSampling2D, ZeroPadding2D, Activation, Reshape
from tensorflow.keras.layers import SeparableConv2D, add, GlobalAveragePooling2D, multiply, concatenate
from tensorflow.keras import Model
def ARM(x, old_filter_num):
x_branch = GlobalAveragePooling2D()(x)
x_branch = Reshape((1, 1, old_filter_num))(x_branch)
x_branch = Conv2D(old_filter_num, kernel_size=(1, 1), strides=(1, 1), padding='same')(x_branch)
x_branch = BatchNormalization()(x_branch)
x_branch = Activation('sigmoid')(x_branch)
x = multiply([x_branch, x])
return x
def FFM(spatial_path, context_path, num_classes):
x = concatenate([spatial_path, context_path], axis=-1)
x = Conv2D(num_classes, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x_branch = GlobalAveragePooling2D()(x)
x_branch = Reshape((1, 1, num_classes))(x_branch)
x_branch = Conv2D(num_classes, kernel_size=(1, 1), strides=(1, 1), padding='same')(x_branch)
x_branch = Activation('relu')(x_branch)
x_branch = Conv2D(num_classes, kernel_size=(1, 1), strides=(1, 1), padding='same')(x_branch)
x_branch = Activation('sigmoid')(x_branch)
x_mul = multiply([x_branch, x])
x = add([x_mul, x])
return x
def spatial_path(x):
x = Conv2D(64, kernel_size=(3, 3), strides=(2, 2), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(128, kernel_size=(3, 3), strides=(2, 2), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(256, kernel_size=(3, 3), strides=(2, 2), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
return x
def entry_flow_1(x, filter_num):
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
x_sep = BatchNormalization()(x_sep)
x_sep = Activation('relu')(x_sep)
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x_sep)
x_sep = BatchNormalization()(x_sep)
x_sep = MaxPooling2D(pool_size=(2, 2))(x_sep)
x_shortcut = Conv2D(filter_num, kernel_size=(1, 1), strides=(2, 2), padding='same')(x)
x_shortcut = BatchNormalization()(x_shortcut)
x = add([x_sep, x_shortcut])
return x
def entry_flow_2and3(x, filter_num):
x_sep = Activation('relu')(x)
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x_sep)
x_sep = BatchNormalization()(x_sep)
x_sep = Activation('relu')(x_sep)
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x_sep)
x_sep = BatchNormalization()(x_sep)
x_sep = MaxPooling2D(pool_size=(2, 2))(x_sep)
x_shortcut = Conv2D(filter_num, kernel_size=(1, 1), strides=(2, 2), padding='same')(x)
x_shortcut = BatchNormalization()(x_shortcut)
x = add([x_sep, x_shortcut])
return x
def middle_flow(x, filter_num):
x_sep = Activation('relu')(x)
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x_sep)
x_sep = BatchNormalization()(x_sep)
x_sep = Activation('relu')(x_sep)
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x_sep)
x_sep = BatchNormalization()(x_sep)
x_sep = Activation('relu')(x_sep)
x_sep = SeparableConv2D(filter_num, kernel_size=(3, 3), strides=(1, 1), padding='same')(x_sep)
x_sep = BatchNormalization()(x_sep)
x = add([x_sep, x])
return x
def build_model(tif_size, bands, class_num):
from pathlib import Path
import sys
print('===== %s =====' % Path(__file__).name)
print('===== %s =====' % sys._getframe().f_code.co_name)
inputs = Input(shape=(tif_size, tif_size, bands))
x = ZeroPadding2D(padding=(1, 1))(inputs)
x = Conv2D(32, kernel_size=(3, 3), strides=(2, 2), padding='valid')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1))(x)
x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding='valid')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = entry_flow_1(x, 128)
x = entry_flow_2and3(x, 256)
x = entry_flow_2and3(x, 728)
for i in range(8):
if i == 7:
x_exit_first = middle_flow(x, 728)
else:
x = middle_flow(x, 728)
x = Activation('relu')(x_exit_first)
x = SeparableConv2D(728, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(1024, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
x_down16 = BatchNormalization()(x)
x = MaxPooling2D(pool_size=(2, 2))(x_down16)
x_shortcut = Conv2D(1024, kernel_size=(1, 1), strides=(2, 2), padding='same')(x_exit_first)
x_shortcut = BatchNormalization()(x_shortcut)
x = add([x, x_shortcut])
x = SeparableConv2D(1536, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = SeparableConv2D(2048, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
x = BatchNormalization()(x)
result_sp = spatial_path(inputs)
x_down32 = Activation('relu')(x)
x_global = GlobalAveragePooling2D()(x_down32)
x_global = Reshape((1, 1, 2048))(x_global)
x_down32 = ARM(x_down32, 2048)
x_down32 = multiply([x_down32, x_global])
x_down16 = ARM(x_down16, 1024)
x_down32 = UpSampling2D(size=(4, 4))(x_down32)
x_down16 = UpSampling2D(size=(2, 2))(x_down16)
result_cp = concatenate([x_down32, x_down16], axis=-1)
x = FFM(result_sp, result_cp, class_num)
x = UpSampling2D(size=(8, 8))(x)
x = Conv2D(class_num, (1, 1), strides=(1, 1), padding='same', activation='softmax')(x)
mymodel = Model(inputs, x)
return mymodel
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!