TF2实现语义分割网络FCN16s


"""
Created on 2020/11/29 19:49.

@Author: yubaby@anne
@Email: yhaif@foxmail.com
"""


from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, BatchNormalization, Activation
from tensorflow.keras.layers import Conv2DTranspose, Add
from tensorflow.keras import Model


def build_model(tif_size, bands, class_num):
    from pathlib import Path
    import sys
    print('===== %s =====' % Path(__file__).name)
    print('===== %s =====' % sys._getframe().f_code.co_name)

    inputs = Input(shape=(tif_size, tif_size, bands))

    # Block1
    x = Conv2D(64, (3, 3), padding='same', name='block1_conv1')(inputs)
    x = BatchNormalization()(x)
    x = Conv2D(64, (3, 3), padding='same', name='block1_conv2')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
    # Block 2
    x = Conv2D(128, (3, 3), padding='same', name='block2_conv1')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(128, (3, 3), padding='same', name='block2_conv2')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
    # Block 3
    x = Conv2D(256, (3, 3), padding='same', name='block3_conv1')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(256, (3, 3), padding='same', name='block3_conv2')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(256, (3, 3), padding='same', name='block3_conv3')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
    pool3 = x
    # Block 4
    x = Conv2D(512, (3, 3), padding='same', name='block4_conv1')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(512, (3, 3), padding='same', name='block4_conv2')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(512, (3, 3), padding='same', name='block4_conv3')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
    pool4 = x
    # Block 5
    x = Conv2D(512, (3, 3), padding='same', name='block5_conv1')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(512, (3, 3), padding='same', name='block5_conv2')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(512, (3, 3), padding='same', name='block5_conv3')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
    pool5 = x

    x = Conv2D(4096, (7, 7), padding='same', name='fc1')(pool5)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.5)(x)
    x = Conv2D(4096, (1, 1), padding='same', name='fc2')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.5)(x)
    conv7 = x

    score_pool4 = Conv2D(class_num, (1, 1), strides=(1, 1), padding='same', activation='relu')(pool4)
    score_conv7 = Conv2D(class_num, (1, 1), strides=(1, 1), padding='same', activation='relu')(conv7)
    score_conv7 = Conv2DTranspose(
        filters=class_num, kernel_size=(2, 2), strides=(2, 2),
        padding='valid', activation=None
    )(score_conv7)

    x = Add()([score_pool4, score_conv7])

    x = Conv2DTranspose(
        filters=class_num, kernel_size=(16, 16), strides=(16, 16),
        padding='valid', activation=None
    )(x)
    x = Conv2D(
        filters=class_num, kernel_size=(1, 1), strides=(1, 1),
        padding='same', activation='softmax'
    )(x)

    mymodel = Model(inputs, x)
    return mymodel

posted @   yub4by  阅读(38)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!
点击右上角即可分享
微信分享提示