"""
Created on 2020/11/29 19:36.
@Author: yubaby@anne
@Email: yhaif@foxmail.com
"""
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.layers import UpSampling2D
from tensorflow.keras import Model
def build_model(tif_size, bands, class_num):
from pathlib import Path
import sys
print('===== %s =====' % Path(__file__).name)
print('===== %s =====' % sys._getframe().f_code.co_name)
inputs = Input(shape=(tif_size, tif_size, bands))
x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(inputs)
x = BatchNormalization()(x)
x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = UpSampling2D(size=(2, 2))(x)
x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
x = BatchNormalization()(x)
x = Conv2D(class_num, (1, 1), strides=(1, 1), padding='same', activation='softmax')(x)
mymodel = Model(inputs, x)
return mymodel
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!