python测试开发django-157.celery异步与redis环境搭建
前言
Celery 是一个分布式队列的管理工具, 可以用 Celery 提供的接口快速实现并管理一个分布式的任务队列.
使用于生产环境的消息代理有 RabbitMQ 和 Redis,还可以使用数据库,本篇介绍redis使用
Redis 环境搭建
Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的 API
Redis 与其他 key - value 缓存产品有以下三个特点:
- Redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
- Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
- Redis支持数据的备份,即master-slave模式的数据备份。
使用 docker 安装Redis
docker pull redis:latest
运行容器
docker run -itd --name redis-test -p 6379:6379 redis
映射容器服务的 6379 端口到宿主机的 6379 端口。外部可以直接通过宿主机ip:6379 访问到 Redis 的服务。
上面是没有设置密码的,设置密码用下面这句
docker run -itd --name myredis -p 6379:6379 redis --requirepass "123456" --restart=always --appendonly yes
django依赖包
django使用的版本是v2.1.2
安装celery版本
pip install celery==3.1.26.post2
安装django-celery包
pip install django-celery==3.3.1
安装Redis
pip install redis==2.10.6
Django 中使用 Celery
要在 Django 项目中使用 Celery,您必须首先定义 Celery 库的一个实例(称为“应用程序”)
如果你有一个现代的 Django 项目布局,比如:
- proj/
- manage.py
- proj/
- __init__.py
- settings.py
- urls.py
那么推荐的方法是创建一个新的proj/proj/celery.py模块来定义 Celery 实例:
import os
from celery import Celery
# Set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
app = Celery('proj')
# Using a string here means the worker doesn't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')
# Load task modules from all registered Django apps.
app.autodiscover_tasks()
@app.task(bind=True)
def debug_task(self):
print(f'Request: {self.request!r}')
其中debug_task是测试的任务,可以注掉
# @app.task(bind=True)
# def debug_task(self):
# print('Request: {0!r}'.format(self.request))
上面一段只需改这句,'proj'是自己django项目的app名称
app = Celery('proj')
然后你需要在你的proj/proj/init.py 模块中导入这个应用程序。这确保在 Django 启动时加载应用程序,以便@shared_task装饰器(稍后提到)将使用它:
proj/proj/init.py:
# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .celery import app as celery_app
__all__ = ('celery_app',)
上面这段固定的,不用改
tasks任务
在app下新建tasks.py,必须要是tasks.py文件名称,django会自动查找到app下的该文件
from celery import shared_task
@shared_task
def add(x, y):
print("task----------1111111111111111111111")
return x + y
@shared_task
def mul(x, y):
return x * y
tasks.py可以写任务函数add、mul,让它生效的最直接的方法就是添加app.task 或shared_task 这个装饰器
添加setting配置
setting.py添加配置
# celery 配置连接redis
BROKER_URL = 'redis://ip:6379'
CELERY_RESULT_BACKEND = 'redis://ip:6379'
CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_ACCEPT_CONTENT=['json']
CELERY_TIMEZONE = 'Asia/Shanghai'
CELERY_ENABLE_UTC = True
创建视图
views.py创建视图
from .tasks import add, mul
def task_demo(request):
res = add.delay(10, 20)
print(res.task_id) # 返回task_id
return JsonResponse({"code": 0, "res": res.task_id})
启动worker
前面pip已经安装过celery应用了,celery是一个独立的应用,可以启动worker
celery -A MyDjango worker -l info
其中MyDjango是你自己的django项目名称
运行日志
-------------- celery@DESKTOP-HJ487C8 v3.1.26.post2 (Cipater)
---- **** -----
--- * *** * -- Windows-10-10.0.17134-SP0
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: yoyo:0x1ea1a96e9b0
- ** ---------- .> transport: redis://localhost:6379//
- ** ---------- .> results: redis://localhost:6379/
- *** --- * --- .> concurrency: 4 (prefork)
-- ******* ----
--- ***** ----- [queues]
-------------- .> celery exchange=celery(direct) key=celery
[tasks]
. yoyo.tasks.add
. yoyo.tasks.mul
[2021-10-18 22:45:03,155: INFO/MainProcess] Connected to redis://localhost:6379//
[2021-10-18 22:45:03,347: INFO/MainProcess] mingle: searching for neighbors
[2021-10-18 22:45:04,897: INFO/MainProcess] mingle: all alone
[2021-10-18 22:45:05,406: WARNING/MainProcess] e:\python36\lib\site-packages\celery\fixups\django.py:265:
UserWarning: Using settings.DEBUG leads to a memory leak, never use this setting in production environments!
warnings.warn('Using settings.DEBUG leads to a memory leak, never '
[2021-10-18 22:45:05,407: WARNING/MainProcess] celery@DESKTOP-HJ487C8 ready.
运行的时候,当我们看到"Connected to redis"说明已经连接成功了!
连接过程中如果出现报错:redis celery:AttributeError: str object has no attribute items
[2021-10-18 17:15:21,801: ERROR/MainProcess] Unrecoverable error: AttributeError("'str' object has no attribute 'items'",)
Traceback (most recent call last):
File "e:\python36\lib\site-packages\celery\worker\__init__.py", line 206, in start
self.blueprint.start(self)
File "e:\python36\lib\site-packages\celery\bootsteps.py", line 123, in start
step.start(parent)
File "e:\python36\lib\site-packages\celery\bootsteps.py", line 374, in start
return self.obj.start()
File "e:\python36\lib\site-packages\celery\worker\consumer.py", line 280, in start
blueprint.start(self)
File "e:\python36\lib\site-packages\celery\bootsteps.py", line 123, in start
step.start(parent)
File "e:\python36\lib\site-packages\celery\worker\consumer.py", line 884, in start
c.loop(*c.loop_args())
File "e:\python36\lib\site-packages\celery\worker\loops.py", line 103, in synloop
connection.drain_events(timeout=2.0)
File "e:\python36\lib\site-packages\kombu\connection.py", line 288, in drain_events
return self.transport.drain_events(self.connection, **kwargs)
File "e:\python36\lib\site-packages\kombu\transport\virtual\__init__.py", line 847, in drain_events
self._callbacks[queue](message)
File "e:\python36\lib\site-packages\kombu\transport\virtual\__init__.py", line 534, in _callback
self.qos.append(message, message.delivery_tag)
File "e:\python36\lib\site-packages\kombu\transport\redis.py", line 146, in append
pipe.zadd(self.unacked_index_key, delivery_tag, time()) \
File "e:\python36\lib\site-packages\redis\client.py", line 2320, in zadd
for pair in iteritems(mapping):
File "e:\python36\lib\site-packages\redis\_compat.py", line 109, in iteritems
return iter(x.items())
AttributeError: 'str' object has no attribute 'items'
redis版本问题,报错版本redis=3.2.1,降低版本redis=2.10.6后,解决
shell交互环境
在django shell交互环境调试运行任务
D:\202107django\MyDjango>python manage.py shell
Python 3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, 03:37:03) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from yoyo.tasks import add,mul
>>> from celery.result import AsyncResult
>>>
>>> res = add.delay(11, 12)
>>> res
<AsyncResult: c5ff83a4-4840-4b36-8869-5ce6081904f1>
>>> res.status
'SUCCESS'
>>>
>>> res.backend
<celery.backends.redis.RedisBackend object at 0x0000015E011C3128>
>>>
>>> res.task_id
'c5ff83a4-4840-4b36-8869-5ce6081904f1'
>>>
>>>
>>> get_task = AsyncResult(id=res.task_id)
>>> get_task
<AsyncResult: c5ff83a4-4840-4b36-8869-5ce6081904f1>
>>> get_task.get()
23
>>>
res.status是查看任务状态
res.task_id 是获取任务的id
根据任务的id查询任务的执行结果AsyncResult(id=res.task_id).get()获取