【bzoj4591】超能粒子炮·改

Portal-->bzoj4591

Solution

  首先这个模数是一个质数

  然后看一下那个\(k\)\(n\)的范围。。行吧Lucas定理咯

  但是如果直接求:

\[\sum\limits_{i=0}^{k}\binom n i \]

  那。。稳稳的T啊。。。所以要化一下式子,我们令\(k=ap+b\)

\[\begin{aligned} \sum\limits_{i=0}^{k}\binom n i&\equiv \sum\limits_{i=0}^k \binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\ &\equiv \sum\limits_{i=0}^{ap-1}\binom {i/p} {n/p}\binom {i\% p}{n\%p}+\sum\limits_{i=ap}^{ap+b}\binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\ &\equiv \sum\limits_{i=0}^{a-1}\binom {i} {n/p}\sum\limits_{i=0}^{p-1}\binom {i}{n\%p}+\binom a {n/p}\sum\limits_{i=0}^b\binom {i}{n\%p} \end{aligned} \]

  然后因为\(p\)比较小(只有\(2333\)真是2333)

  所以我们可以直接暴力处理出\(n,m<=2333\)\(\binom n m\)的的前缀和

  然后对于范围内的直接调用,范围外的用上面那个式子递归处理就好了

  

  代码大概长这个样子:

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int MOD=2333;
ll c[MOD+10][MOD+10],sum[MOD+10][MOD+10];
ll n,k,T,ans;
void prework(int n);
ll Lucas(ll n,ll m);
ll Min(ll x,ll y){return x<y?x:y;}
ll f(ll n,ll k);

int main(){
#ifndef ONLINE_JUDGE
	freopen("a.in","r",stdin);
#endif
	ll a,b;
	scanf("%lld",&T);
	prework(MOD);
	for (int o=1;o<=T;++o){
		scanf("%lld%lld",&n,&k);
		printf("%lld\n",f(n,k));
	}
}

void prework(int n){
	c[0][0]=1;
	for (int i=1;i<=n;++i){
		c[i][0]=1; c[i][i]=1;
		for (int j=1;j<i;++j)
			c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
	}
	for (int i=0;i<=n;++i){
		sum[i][0]=c[i][0];
		for (int j=1;j<=n;++j)
			sum[i][j]=(sum[i][j-1]+c[i][j])%MOD;
	}
}

ll Lucas(ll n,ll m){
	if (n<m) return 0;
	if (n<MOD&&m<MOD) return c[n][m];
	return c[n%MOD][m%MOD]*Lucas(n/MOD,m/MOD)%MOD;
}

ll f(ll n,ll k){
	if (k<0) return 0;
	if (n<MOD&&k<MOD) return sum[n][k];
	return (f(n/MOD,min(k/MOD-1,n/MOD))*sum[n%MOD][MOD-1]%MOD+Lucas(n/MOD,k/MOD)*sum[n%MOD][k%MOD]%MOD)%MOD;
}
posted @ 2018-06-27 20:40  yoyoball  阅读(203)  评论(0编辑  收藏  举报