thread_asyncio
# 使用多线程:在携程中集成阻塞io import asyncio from concurrent.futures import ThreadPoolExecutor import socket from urllib.parse import urlparse def get_url(url): # 通过socket请求html url = urlparse(url) host = url.netloc path = url.path if path == "": path = "/" # 建立socket连接 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # client.setblocking(False) client.connect((host, 80)) # 阻塞不会消耗cpu # 不停的询问连接是否建立好, 需要while循环不停的去检查状态 # 做计算任务或者再次发起其他的连接请求 client.send("GET {} HTTP/1.1\r\nHost:{}\r\nConnection:close\r\n\r\n".format(path, host).encode("utf8")) # 通过\r\n 添加请求头信息 data = b"" while True: d = client.recv(1024) if d: data += d else: break data = data.decode("utf8") # data包含请求头信息和返回的响应数据 html_data = data.split("\r\n\r\n")[1] # 通过\r\n\r\n 讲请求头信息和响应数据分开 print(html_data) client.close() if __name__ == "__main__": import time start_time = time.time() loop = asyncio.get_event_loop() executor = ThreadPoolExecutor() tasks = [] for url in range(20): url = "http://shop.projectsedu.com/goods/{}/".format(url) # asyncio 的事件循环背后维护一个 ThreadPoolExecutor 对象,我们可以调用 run_in_executor 方法, 把可调用的对象发给它执行。 task = loop.run_in_executor(executor, get_url, url) # loop.run_in_executor把阻塞的作业(例如保存文件)委托给线程池做。 使用默认的 TrreadPoolExecutor 实例 tasks.append(task) loop.run_until_complete(asyncio.wait(tasks)) print("last time:{}".format(time.time() - start_time))