朴素贝叶斯
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import classification_report def naviebayes(): """ 朴素贝叶斯进行文本分类 :return: None """ news = fetch_20newsgroups(subset = 'all' ) # 进行数据分割 x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size = 0.25 ) # 对数据集进行特征抽取 tf = TfidfVectorizer() # 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d'] x_train = tf.fit_transform(x_train) print (tf.get_feature_names()) x_test = tf.transform(x_test) # 进行朴素贝叶斯算法的预测 mlt = MultinomialNB(alpha = 1.0 ) print (x_train.toarray()) mlt.fit(x_train, y_train) y_predict = mlt.predict(x_test) print ( "预测的文章类别为:" , y_predict) # 得出准确率 print ( "准确率为:" , mlt.score(x_test, y_test)) print ( "每个类别的精确率和召回率:" , classification_report(y_test, y_predict, target_names = news.target_names)) return None if __name__ = = "__main__" : naviebayes() |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)