第二章

第二章 面试需要的基础知识

    /**
     * 面试题3(一) 找到数组中任意一个相同的数字
     * 思路:
     * 以整数的值为散列值,通过交换将该值放到相应的位置上
     * 总结:
     * 小型正整数的值可以直接作为散列值(hashcode),存放到相应的位置,以O(n)的时间复杂度实现排序
     * @param arr
     * @return
     */
    public int findSameNumber(int[] arr) {
        //非法输入
        if (arr == null || arr.length <= 1) return -1;
        //下面假设输入中符合题目要求
        for (int i = 0; i < arr.length; i++) {
            while (arr[i] != i) {
                if (arr[arr[i]] != arr[i]) //不相等则交换
                    exch(arr, i, arr[i]);
                else return arr[i]; //相等,则找到了相同的数字
            }
        }
        return -1;
}

    private void exch(int[] arr, int a, int b) {
        int temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }

    public static void main(String[] args) {
        int[] ints = {2, 3, 1, 0, 2, 5, 3};
        System.out.println(new Solution().findSameNumber(ints));
    }

 

    /**
     * 面试题4 在二维数组中查找是否包含数组
     * 思路:不断地将问题的范围缩小
     * 总结:找规律,找出可以用循环或者递归的方法解决
     *
     * @param arr
     * @param num
     * @return
     */
    public boolean findNumber(int[][] arr, int num) {
        //非法输入
        if (arr == null) {
            return false;
        }
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == null) return false;
        }
        //从右上角开始
        int length = arr.length;
        int row = 0;
        int col = length - 1;
        while (row < length && col >= 0) {
            if (arr[row][col] < num) row++;
            else if (arr[row][col] > num) col--;
            else return true;
        }
        return false;
    }

 

    /**
     * 面试题5  将空格替换为%02
     * 解法:从后到前替换,将字符一次移动到位,避免了数组的频繁移动
     * 注意:位运算优先级低于加减
     * @param str
     */
    public String replaceBlank(String str) {
        //非法输入
        int length = str.length();
        if (str == null || length == 0) return null;
        //转化成数组
        char[] chars = str.toCharArray();
        int count = 0; //字符串中空格的数量
        for (int i = 0; i < length; i++) {
            if (chars[i] == ' ') count++;
        }
        char[] tempChars = new char[length + (count << 1)];
        int p = length - 1; //两个指针
        int q = tempChars.length - 1;
        while (p >= 0) {
            if (chars[p] != ' ') {
                tempChars[q--] = chars[p];
            } else {
                tempChars[q--] = '0';
                tempChars[q--] = '2';
                tempChars[q--] = '%';
            }
            p--;
        }
        return String.valueOf(tempChars);
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        String str = "we are world.";
        System.out.println(solution.replaceBlank(str));
    }

 

    /**
     * 面试题6:反向打印链表
     * 解法一:用递归的逆序遍历的方式
     * 解法二:顺序访问链表,将需要打印的值存入栈中
     *
     * @param node
     */
    public void printReverse(Node node) {
        //采用解法一
        //非法输入
        if (node == null) return;
        printReverse(node.next);
        System.out.println(node.val);
    }

    public void printReverseUseStack(Node node) {
        //采用解法二
        if (node == null) return;
        Stack<Integer> s = new Stack<>(); //使用栈
        for (Node i = node; i != null; i = i.next) { //顺序遍历链表
            s.push(i.val);
        }
        while (!s.empty()) { //出栈
            System.out.println(s.pop());
        }
    }

 

    /**
     * 面试题7
     * 根据前序遍历和中序遍历的结果数组重建二叉树
     * 解法:根据不同遍历的特点 找到根结点,然后再递归地处理子树
     *
     * @param pre
     * @param in
     * @return
     */
    public TreeNode construct(int[] pre, int[] in) {
        //非法输入
        if (pre == null || in == null || pre.length == 0 || in.length == 0)
            return null;
        try {
            return constructCore(pre, in, 0, pre.length - 1, 0, in.length - 1);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }

    /**
     * @param pre
     * @param in
     * @param pp1      前序数组的范围指针
     * @param pp2
     * @param ip1      中序数组的范围指针
     * @param ip2
     * @return
     */
    private TreeNode constructCore(int[] pre, int[] in, int pp1, int pp2, int ip1, int ip2) throws Exception {
        if (pp1 > pp2 || ip1 > ip2) return null;//无子树,返回null
        TreeNode node = new TreeNode(); //根节点
        node.val = pre[pp1];
        int nodeIndexInInOder = -1; //根结点在中序遍历中的索引
        for (int i = ip1; i <= ip2; i++) { //从中序遍历中寻找根结点
            if (in[i] == node.val) {
                nodeIndexInInOder = i;
                break;
            }
        }
        if (nodeIndexInInOder == -1) throw new Exception("Invalide Input");//在中序中没有找到
        node.left = constructCore(pre, in, pp1 + 1, pp1 + (nodeIndexInInOder - ip1), ip1, nodeIndexInInOder - 1);
        node.right = constructCore(pre, in, pp1 + 1 + (nodeIndexInInOder - ip1), pp2, nodeIndexInInOder + 1, ip2);
        return node;
    }

 

    /**
     * 面试题8 二叉树的下一个结点
     * 分析:有右子树的情况下,下一个节点是右子树的最左侧(最小)结点;
     * 无右子树的情况下,下一个结点是沿着父结点向上查找,第一个遇到的左链接父结点。如果查找到父节点都没有找到下一结点则无下一节点。
     */
    public BTreeNode findNextNode(BTreeNode node) {
        //非法输入处理
        if (node == null) return null;
        //有右子树的情况
        if (node.right != null)
            return min(node.right); //取最小的结点
        //没有右子树的情况
        while (node.parent != null) { //有父结点,沿着父结点向上走
            if (node.parent.left == node)
                return node.parent;
            node = node.parent;
        }
        return null; //没有找到父节点
    }

    private BTreeNode min(BTreeNode node) {
        if (node.left == null) return node;
        return min(node.left);
    }

 

    /**
     * 面试题9:用两个栈实现队列
     * 分析:一个栈用来入,一个栈用来出
     */
    class queueStack {
        //用两个栈来实现
        //为了方便使用了Integer
        private Stack<Integer> sIn;
        private Stack<Integer> sOut;

        public queueStack() {
            sIn = new Stack<>();
            sOut = new Stack<>();
        }

        //实现尾部添加
        public void appendTail(Integer val) {
            sIn.push(val);
        }

        //实现头部删除
        public Integer deleteHead() {
            if (sOut.empty()) { //出栈是空的情况
                while (!sIn.empty())
                    sOut.push(sIn.pop());
            }
            if (sOut.empty()) return null; //出栈依旧是空
            return sOut.pop();
        }
    }

 

    /**
     * 面试题9:用两个队列实现栈操作
     * 分析:交替地从一个队列复制到另外一个队列,复制过去时留下最后添加的元素用于弹出
     */
    class StackQueue {
        private LinkedQueue<Integer> que1;
        private LinkedQueue<Integer> que2;
        private boolean isQue1 = true;//true表示当前使用Que1

        //入栈
        public void push(Integer val) {
            if (isQue1)
                que1.enqueue(val);
            else
                que2.enqueue(val);
        }
        //出
        public Integer pop() {
            if (isQue1) {
                if (que1.isEmpty()) return null;
                while (que1.count != 1)
                    que2.enqueue(que1.dequeue());
                isQue1 = false;
                return que1.dequeue();
            } else {
                if (que2.isEmpty()) return null;
                while (que2.count != 1)
                    que1.enqueue(que2.dequeue());
                isQue1 = true;
                return que2.dequeue();
            }
        }
    }

 

    /**
     * 面试题10 斐波那契数
     * 分析:一般来说,循环算法占用的空间比递归的方法更加少
     * 普通青蛙
     * 分析:可以变为斐波那契数列问题
     * 变态青蛙
     * 分析:通过数学的分析,可以得到n台阶跳法的函数表达式
     */
    public int fibonacci(int n) {
        if (n < 0) return -1;//-1表示错误输入
        if (n == 0) return 0;
        if (n == 1) return 1;
        //用数组保存前两个计算结果
        int[] result = {0, 1};
        int num = 2;
        while (num != n) {
            int currentResult = result[0] + result[1];
            result[0] = result[1];
            result[1] = currentResult;
        }
        return result[0] + result[1];
    }

 

/**面试题12 回溯法从二维数组中寻找字符串
 * @ClassName Solution
 * @Author wangyudi
 * @Date 2019/7/14 16:13
 * @Version 1.0
 * @Description
 */

class TreeNode {
    int val = 0;
    TreeNode left = null;
    TreeNode right = null;

    public TreeNode(int val) {
        this.val = val;
    }

}

public class Solution {
    public boolean findPath(char[][] matrix, String str) {
        //deal with invalid input
        if (str == null || matrix == null) return false;
        //下面默认输入是一个有效的矩形二维数组
        int rows = matrix.length;
        int cols = matrix[0].length;
        boolean[] visited = new boolean[rows * cols]; //存放该数组对应元素是否已被访问信息
        char[] charStr = str.toCharArray();
        int pathIndex = 0;//记录需要寻找字符串的始端
        boolean result = false;
        for (int row = 0; row < rows; row++) {
            for (int col = 0; col < cols; col++) {
                if (findPathCore(matrix, charStr, pathIndex, row, col, rows, cols, visited)) {
                    result = true;
                    break;
                }
            }
        }
        return result;
    }

    /**
     * 查找路径的迭代函数
     * @param matrix
     * @param charStr
     * @param pathIndex
     * @param row
     * @param col
     * @param rows
     * @param cols
     * @param visited
     * @return
     */
    private boolean findPathCore(char[][] matrix, char[] charStr, int pathIndex, int row, int col, int rows, int cols, boolean[] visited) {
        //1 判断是否已经找到字符串
        if (pathIndex == charStr.length) return true;
        boolean result = false;
        //2 判断二维数组的字符是否对应字符串中的字符
        if (row >= 0 && row < rows &&
                col >= 0 && col < cols &&
                charStr[pathIndex] == matrix[row][col] &&
                visited[row * cols + col] == false) {
            //对应
            //寻找下一个子字符串,并修改访问信息
            pathIndex++;
            visited[row * cols + col] = true;
            //从该元素所在位置的四个方向中寻找下一个字符串
            result = findPathCore(matrix, charStr, pathIndex, row + 1, col, rows, cols, visited) ||
                    findPathCore(matrix, charStr, pathIndex, row - 1, col, rows, cols, visited) ||
                    findPathCore(matrix, charStr, pathIndex, row, col + 1, rows, cols, visited) ||
                    findPathCore(matrix, charStr, pathIndex, row, col - 1, rows, cols, visited);
            //四个方向都没有找到相应的子字符串,则说明该位置不正确
            //修改访问信息,然后回归到上一个位置
            if (!result) {
                visited[row * cols + col] = false;
            }
        }
        return result;
    }

// Test input and output
    public static void main(String[] args) {
        Solution solution = new Solution();
        char[] char1 = {'a', 'b', 't', 'g'};
        char[] char2 = {'c', 'f', 'c', 's'};
        char[] char3 = {'j', 'd', 'e', 'h'};
        char[] char4 = {'a', 'b', 't', 'g'};
        char[][] chars = {char1, char2, char3, char4};
        String str = "bfcc";
        System.out.println(solution.findPath(chars, str));
    }

}

 

//面试题14 剪绳子 
public class Solution {
   /**
     * 求如何剪绳子,绳段的乘积最大
     * 法一:动态规划
     *
     * @param length 绳的长度
     * @return
     */
    public int maxProduct1(int length) {
        //deal with invalid input
        if (length <= 0) return -1;
        if (length == 1) return 1;
        if (length == 2) return 2;
        if (length == 3) return 3;
        //存储不同长度下绳段乘积最大值
        int[] products = new int[length + 1];
        products[1] = 1;
        products[2] = 2;
        products[3] = 3;
        products[4] = 4;
        int max = 0;//存放不同长度下绳段乘积最大值
        int temp = 0;
        for (int i = 5; i <= length; i++) {
            for (int j = 1; j <= i >> 1; j++) {
                temp = products[j] * products[i - j];
                if (max < temp) {
                    max = temp;
                }
            }
            products[i] = max;
        }
        return products[length];
    }

    /**
     * 贪婪算法
     * 思路:长度大于5时,尽可能地剪3;小于5不剪
     */
    public int maxProduct2(int length) {
        if (length <= 0) return -1;
        if (length < 5) return length;
        int countOf3 = 0;
        while (length >= 5) {
            length -= 3;
            countOf3++;
        }
        return (int) Math.pow(3, countOf3) * length;
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        System.out.println(solution.maxProduct1(15));
        System.out.println(solution.maxProduct2(15));
    }
}

 

/*
面试题15 二进制中1的个数
自身 & (自身-1) 可以使最低位的1置为0

 Java中int类型的负数的二进制用补码的形式存储

下面算法不适合负数
*/ 
public int numberOf1(int num) {
        int count = 0;
        while (num != 0) {
            num = num & (num - 1);
            count++;
        }
        return count;
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        int a = 60;
        System.out.println(solution.numberOf1(a));
    }

 

  /**面试题17
     * 以O(1)删除列表中的一个指定结点
     * 情况分类:不是尾节点, 是尾结点有前结点, 是尾结点无前节点
     *
     * @param first
     * @param toBeDeleteNode
     */
    public void deleteNode(Node first, Node toBeDeleteNode) throws Exception {
        //invalid input
        if (first == null || toBeDeleteNode == null) return;
        //不是尾
        if (toBeDeleteNode.next != null) {
            toBeDeleteNode.val = toBeDeleteNode.next.val;
            toBeDeleteNode.next = toBeDeleteNode.next.next;
        } else {
            Node i = null;
            for (i = first; i.next != toBeDeleteNode; i = i.next) {
            }
            //有前
            if (i != null) {
                i.next = null;
            }
            //无前
            else first = null;
        }
    }

 

 /**
     * 面试题18:删除连续重复的节点
     *
     * @param first
     */
    public Node deleteSameNode(Node first) {
        //invalid input
        if (first == null) return null;
        Node preNode = null; //reserve preNode
        Node node = first;
        while (node != null) {
            if (node.next != null && node.val == node.next.val)
                if (preNode == null) {
                    node = deleteSameNodeInList(node);
                    first = node;  //值类型参数不能直接改变
                } else {
                    node = deleteSameNodeInList(node);
                    preNode.next = node;
                }
            else {
                preNode = node;
                node = node.next;
            }
        }
        return first;
    }

    private Node deleteSameNodeInList(Node node) {
        Node result = node;
        while (result.next != null && result.val == result.next.val) {
            result = result.next;
        }
        return result.next;
    }

 

    /**
     * 面试题19 匹配字符串
     *
     * @param str
     * @param strFormat
     * @return
     */
    public boolean match(char[] str, char[] strFormat) {
        if (str == null || strFormat == null) return false;
        return matchCore(str, 0, strFormat, 0);
    }

    private boolean matchCore(char[] str, int strIndex, char[] strFormat, int strFormatIndex) {
        if (strIndex == str.length && strFormatIndex == strFormat.length) {
            return true;
        }
        if (strIndex >= str.length || strFormatIndex >= strFormat.length) return false;
        //"."
        if (strFormat[strFormatIndex] == '.') return matchCore(str, strIndex + 1, strFormat, strFormatIndex + 1);
            //"a"
        else if (strFormatIndex == strFormat.length - 1 || strFormat[strFormatIndex + 1] != '*') {
            if (str[strIndex] != strFormat[strFormatIndex]) return false;
            else return matchCore(str, strIndex + 1, strFormat, strFormatIndex + 1);
        }
        //"a*"
        else {
            if (str[strIndex] == strFormat[strFormatIndex] || strFormat[strFormatIndex] == '.')
                return matchCore(str, strIndex, strFormat, strFormatIndex + 2) ||
                        matchCore(str, strIndex + 1, strFormat, strFormatIndex + 2) ||
                        matchCore(str, strIndex + 1, strFormat, strFormatIndex);
            else return matchCore(str, strIndex, strFormat, strFormatIndex + 2);
        }
    }

 

    /**
     * 面试题21:将奇数调整到偶数的前面
     * 思路:快速排序法partition方法
     * 可以将arr[--hi]&0x01)==0判断方法提取为抽象方法(模板方法)
     *
     * @param arr
     */
    public void reorderOddEven(int[] arr) {
        if (arr == null || arr.length == 0) return;
        int lo = -1;
        int hi = arr.length;
        while (hi > lo) {
            while ((arr[++lo] & 0x01) != 0) if (lo == arr.length - 1) break;
            while ((arr[--hi] & 0x01) == 0) if (hi == 0) break;
            if (hi > lo) {
                int temp = arr[lo];
                arr[lo] = arr[hi];
                arr[hi] = temp;
            }
        }
    }

 

    /**
     * 面试题22:查找链表中倒数第 k 个结点
     *
     * @param head
     * @param k
     * @return
     */
    public ListNode FindKthToTail(ListNode head, int k) {
        if (head == null || k <= 0) return null; //invalid input
        ListNode lo = head;
        ListNode hi = head;
        for (int i = 0; i < k - 1; i++) {
            if (hi.next == null) return null; // doesn't have Penultimate k_Th
            hi = hi.next;
        }
        while (hi.next != null) {
            lo = lo.next;
            hi = hi.next;
        }
        return lo;
    }

 

  /**
     * 面试题23:找到链表中环的入口结点
     * 思路:
     * 先确定有环
     * 确定换中结点个数
     * 确定环的入口结点
     *
     * @param head
     * @return
     */
    public ListNode EntryNodeOfTheLoop(ListNode head) {
        if (head == null) return null;
        ListNode p1 = head;
        ListNode p2 = head;
        ListNode meetNode = null;
        do {
            if (p1.next == null) break;
            else p1 = p1.next;
            if (p2.next == null || p2.next.next == null) break;
            else p2 = p2.next.next;
            if (p1 == p2) meetNode = p1;
        } while (p1 != p2);
        // no loop
        if (meetNode == null) return null;
        // have loop; get the number of node in the loop
        p1 = meetNode;
        p2 = meetNode.next;
        int count = 1;
        while (p1 != p2) {
            p2 = p2.next;
            ++count;
        }
        p1 = head;
        p2 = head;
        for (int i = 0; i < count; i++) {
            p2 = p2.next;
        }
        while (p1 != p2) {
            p1 = p1.next;
            p2 = p2.next;
        }
        return p1;
    }

 

    /**
     * 面试题24:将链表翻转
     * 思路:从最后一个结点开始翻转
     *
     * @param head
     * @return
     */
    public ListNode ReverseList(ListNode head) {
        if (head == null) return null;
        if (head.next == null) return head;
        ListNode prevNode = null;
        ListNode curNode = head;
        ListNode storNode = curNode.next;
        while (curNode != null) {
            curNode.next = prevNode;
            prevNode = curNode;
            curNode = storNode;
            storNode = curNode == null ? null : curNode.next;
        }
        return prevNode;
    }

 

   /**
     * 面试题25:合并两个链表
     * 思路:类似归并排序中的归并算法
     *
     * @param list1
     * @param list2
     * @return
     */
    public ListNode Merge(ListNode list1, ListNode list2) {
        if (list1 == null && list1 == null) return null;
        if (list1 == null) return list2;
        if (list2 == null) return list1;
        ListNode result = null;
        ListNode min = null;
        ListNode cur = null;
        while (list1 != null && list2 != null) {
            if (list1.val < list2.val) {
                min = list1;
                list1 = list1.next;
            } else {
                min = list2;
                list2 = list2.next;
            }
            if (result == null) {
                result = min;
                cur = min;
            } else {
                cur.next = min;
                cur = min;
            }
        }
        if (list1 != null) cur.next = list1;
        if (list2 != null) cur.next = list2;
        return result;
    }

    /**
     * 面试题25:合并两个链表
     * 思路:递归的方法
     * @param list1
     * @param list2
     * @return
     */
    public ListNode merge(ListNode list1, ListNode list2) {
        if(list1==null&& list2==null) return null;
        if (list1 == null) return list2;
        if (list2 == null) return list1;
        ListNode head = null;
        if(list1.val<list2.val){            
            head = list1;            
            head.next = merge(list1.next,list2);    
       }        
        else {    
        head=list2;           
        head.next = merge(list1,list2.next);        
       }        

        return head;   
 }    
                                                        

 

posted @ 2019-07-27 20:44  由走啦啦啦  阅读(141)  评论(0编辑  收藏  举报