Linux性能优化gprof使用
2017-12-05 17:45 youxin 阅读(8102) 评论(0) 编辑 收藏 举报- gprof用于分析函数调用耗时,可用之抓出最耗时的函数,以便优化程序。
- gcc链接时也一定要加-pg参数,以使程序运行结束后生成gmon.out文件,供gprof分析。
- gprof默认不支持多线程程序,默认不支持共享库程序。
- gcc -pg 编译程序
- 运行程序,程序退出时生成 gmon.out
- gprof ./prog gmon.out -b 查看输出
要想产生gmon.out文件,必须在编译和链接时,都加上-pg -g选项。
1 简介
改进应用程序的性能是一项非常耗时耗力的工作,但是究竟程序中是哪些函数消耗掉了大部分执行时间,这通常都不是非常明显的。GNU 编译器工具包所提供了一种剖析工具 GNU profiler(gprof)。gprof 可以为 Linux平台上的程序精确分析性能瓶颈。gprof精确地给出函数被调用的时间和次数,给出函数调用关系。
gprof 用户手册网站 http://sourceware.org/binutils/docs-2.17/gprof/index.html
2 功能
Gprof 是GNU gnu binutils工具之一,默认情况下linux系统当中都带有这个工具。
1. 可以显示“flat profile”,包括每个函数的调用次数,每个函数消耗的处理器时间,
2. 可以显示“Call graph”,包括函数的调用关系,每个函数调用花费了多少时间。
3. 可以显示“注释的源代码”--是程序源代码的一个复本,标记有程序中每行代码的执行次数。
3 原理
通过在编译和链接程序的时候(使用 -pg 编译和链接选项),gcc 在你应用程序的每个函数中都加入了一个名为mcount ( or “_mcount” , or “__mcount” , 依赖于编译器或操作系统)的函数,也就是说你的应用程序里的每一个函数都会调用mcount, 而mcount 会在内存中保存一张函数调用图,并通过函数调用堆栈的形式查找子函数和父函数的地址。这张调用图也保存了所有与函数相关的调用时间,调用次数等等的所有信息。
4 使用流程
1. 在编译和链接时 加上-pg选项。一般我们可以加在 makefile 中。
2. 执行编译的二进制程序。执行参数和方式同以前。
3. 在程序运行目录下 生成 gmon.out 文件。如果原来有gmon.out 文件,将会被重写。
4. 结束进程。这时 gmon.out 会再次被刷新。
5. 用 gprof 工具分析 gmon.out 文件。
5 参数说明
l -b 不再输出统计图表中每个字段的详细描述。
l -p 只输出函数的调用图(Call graph的那部分信息)。
l -q 只输出函数的时间消耗列表。
l -e Name 不再输出函数Name 及其子函数的调用图(除非它们有未被限制的其它父函数)。可以给定多个 -e 标志。一个 -e 标志只能指定一个函数。
l -E Name 不再输出函数Name 及其子函数的调用图,此标志类似于 -e 标志,但它在总时间和百分比时间的计算中排除了由函数Name 及其子函数所用的时间。
l -f Name 输出函数Name 及其子函数的调用图。可以指定多个 -f 标志。一个 -f 标志只能指定一个函数。
l -F Name 输出函数Name 及其子函数的调用图,它类似于 -f 标志,但它在总时间和百分比时间计算中仅使用所打印的例程的时间。可以指定多个 -F 标志。一个 -F 标志只能指定一个函数。-F 标志覆盖 -E 标志。
l -z 显示使用次数为零的例程(按照调用计数和累积时间计算)。
一般用法: gprof –b 二进制程序 gmon.out >report.txt
6 报告说明
Gprof 产生的信息解释:
%time |
Cumulative seconds |
Self Seconds |
Calls |
Self TS/call |
Total TS/call |
name |
该函数消耗时间占程序所有时间百分比 |
程序的累积执行时间 (只是包括gprof能够监控到的函数) |
该函数本身执行时间 (所有被调用次数的合共时间) |
函数被调用次数 |
函数平均执行时间 (不包括被调用时间) (函数的单次执行时间) |
函数平均执行时间 (包括被调用时间)
(函数的单次执行时间) |
函数名 |
Call Graph 的字段含义:
Index |
%time |
Self |
Children |
Called |
Name |
索引值 |
函数消耗时间占所有时间百分比 |
函数本身执行时间 |
执行子函数所用时间 |
被调用次数 |
函数名 |
注意:
程序的累积执行时间只是包括gprof能够监控到的函数。工作在内核态的函数和没有加-pg编译的第三方库函数是无法被gprof能够监控到的,(如sleep()等)
Gprof 的具体参数可以 通过 man gprof 查询。
7 共享库的支持
对于代码剖析的支持是由编译器增加的,因此如果希望从共享库中获得剖析信息,就需要使用 -pg 来编译这些库。提供已经启用代码剖析支持而编译的 C 库版本(libc_p.a)。
如果需要分析系统函数(如libc库),可以用 –lc_p替换-lc。这样程序会链接libc_p.so或libc_p.a。这非常重要,因为只有这样才能监控到底层的c库函数的执行时间,(例如memcpy(),memset(),sprintf()等)。
gcc example1.c –pg -lc_p -o example1
注意要用ldd ./example | grep libc来查看程序链接的是libc.so还是libc_p.so
8 用户时间与内核时间
gprof 的最大缺陷:它只能分析应用程序在运行过程中所消耗掉的用户时间,无法得到程序内核空间的运行时间。通常来说,应用程序在运行时既要花费一些时间来运行用户代码,也要花费一些时间来运行 “系统代码”,例如内核系统调用sleep()。
有一个方法可以查看应用程序的运行时间组成,在 time 命令下面执行程序。这个命令会显示一个应用程序的实际运行时间、用户空间运行时间、内核空间运行时间。
如 time ./program
输出:
real 2m30.295s
user 0m0.000s
sys 0m0.004s
9 注意事项
1. g++在编译和链接两个过程,都要使用-pg选项。
2. 只能使用静态连接libc库,否则在初始化*.so之前就调用profile代码会引起“segmentation fault”,解决办法是编译时加上-static-libgcc或-static。
3. 如果不用g++而使用ld直接链接程序,要加上链接文件/lib/gcrt0.o,如ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p。也可能是gcrt1.o
4. 要监控到第三方库函数的执行时间,第三方库也必须是添加 –pg 选项编译的。
5. gprof只能分析应用程序所消耗掉的用户时间.
6. 程序不能以demon方式运行。否则采集不到时间。(可采集到调用次数)
7. 首先使用 time 来运行程序从而判断 gprof 是否能产生有用信息是个好方法。
8. 如果 gprof 不适合您的剖析需要,那么还有其他一些工具可以克服 gprof 部分缺陷,包括 OProfile 和 Sysprof。
9. gprof对于代码大部分是用户空间的CPU密集型的程序用处明显。对于大部分时间运行在内核空间或者由于外部因素(例如操作系统的 I/O 子系统过载)而运行得非常慢的程序难以进行优化。
10. gprof 不支持多线程应用,多线程下只能采集主线程性能数据。原因是gprof采用ITIMER_PROF信号,在多线程内只有主线程才能响应该信号。但是有一个简单的方法可以解决这一问题:http://sam.zoy.org/writings/programming/gprof.html
11. gprof只能在程序正常结束退出之后才能生成报告(gmon.out)。
a) 原因: gprof通过在atexit()里注册了一个函数来产生结果信息,任何非正常退出都不会执行atexit()的动作,所以不会产生gmon.out文件。
b) 程序可从main函数中正常退出,或者通过系统调用exit()函数退出。
10 多线程应用
gprof 不支持多线程应用,多线程下只能采集主线程性能数据。原因是gprof采用ITIMER_PROF信号,在多线程内只有主线程才能响应该信号。
采用什么方法才能够分析所有线程呢?关键是能够让各个线程都响应ITIMER_PROF信号。可以通过桩子函数来实现,重写pthread_create函数。
//////////////////// gprof-helper.c////////////////////////////
#define _GNU_SOURCE
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <pthread.h>
static void * wrapper_routine(void *);
/* Original pthread function */
static int (*pthread_create_orig)(pthread_t *__restrict,
__const pthread_attr_t *__restrict,
void *(*)(void *),
void *__restrict) = NULL;
/* Library initialization function */
void wooinit(void) __attribute__((constructor));
void wooinit(void)
{
pthread_create_orig = dlsym(RTLD_NEXT, "pthread_create");
fprintf(stderr, "pthreads: using profiling hooks for gprof/n");
if(pthread_create_orig == NULL)
{
char *error = dlerror();
if(error == NULL)
{
error = "pthread_create is NULL";
}
fprintf(stderr, "%s/n", error);
exit(EXIT_FAILURE);
}
}
/* Our data structure passed to the wrapper */
typedef struct wrapper_s
{
void * (*start_routine)(void *);
void * arg;
pthread_mutex_t lock;
pthread_cond_t wait;
struct itimerval itimer;
} wrapper_t;
/* The wrapper function in charge for setting the itimer value */
static void * wrapper_routine(void * data)
{
/* Put user data in thread-local variables */
void * (*start_routine)(void *) = ((wrapper_t*)data)->;start_routine;
void * arg = ((wrapper_t*)data)->;arg;
/* Set the profile timer value */
setitimer(ITIMER_PROF, &((wrapper_t*)data)->;itimer, NULL);
/* Tell the calling thread that we don't need its data anymore */
pthread_mutex_lock(&((wrapper_t*)data)->;lock);
pthread_cond_signal(&((wrapper_t*)data)->;wait);
pthread_mutex_unlock(&((wrapper_t*)data)->;lock);
/* Call the real function */
return start_routine(arg);
}
/* Our wrapper function for the real pthread_create() */
int pthread_create(pthread_t *__restrict thread,
__const pthread_attr_t *__restrict attr,
void * (*start_routine)(void *),
void *__restrict arg)
{
wrapper_t wrapper_data;
int i_return;
/* Initialize the wrapper structure */
wrapper_data.start_routine = start_routine;
wrapper_data.arg = arg;
getitimer(ITIMER_PROF, &wrapper_data.itimer);
pthread_cond_init(&wrapper_data.wait, NULL);
pthread_mutex_init(&wrapper_data.lock, NULL);
pthread_mutex_lock(&wrapper_data.lock);
/* The real pthread_create call */
i_return = pthread_create_orig(thread,
attr,
&wrapper_routine,
&wrapper_data);
/* If the thread was successfully spawned, wait for the data
* to be released */
if(i_return == 0)
{
pthread_cond_wait(&wrapper_data.wait, &wrapper_data.lock);
}
pthread_mutex_unlock(&wrapper_data.lock);
pthread_mutex_destroy(&wrapper_data.lock);
pthread_cond_destroy(&wrapper_data.wait);
return i_return;
}
///////////////////
然后编译成动态库 gcc -shared -fPIC gprof-helper.c -o gprof-helper.so -lpthread -ldl
使用例子:
/////////////////////a.c/////////////////////////////
#include <stdio.h>;
#include <stdlib.h>;
#include <unistd.h>;
#include <pthread.h>;
#include <string.h>;
void fun1();
void fun2();
void* fun(void * argv);
int main()
{
int i =0;
int id;
pthread_t thread[100];
for(i =0 ;i< 100; i++)
{
id = pthread_create(&thread[i], NULL, fun, NULL);
printf("thread =%d/n",i);
}
printf("dsfsd/n");
return 0;
}
void* fun(void * argv)
{
fun1();
fun2();
return NULL;
}
void fun1()
{
int i = 0;
while(i<100)
{
i++;
printf("fun1/n");
}
}
void fun2()
{
int i = 0;
int b;
while(i<50)
{
i++;
printf("fun2/n");
//b+=i;
}
}
///////////////
gcc -pg a.c gprof-helper.so
运行程序:
./a.out
分析gmon.out:
gprof -b a.out gmon.out