代码改变世界

编程之美-分层遍历二叉树

2013-08-29 03:44  youxin  阅读(1740)  评论(0编辑  收藏  举报

问题1:给定一颗二叉树,要求按分层遍历该二叉树,即从上到下按层访问该二叉树(每一层将单独输出一行),每一层要求访问的顺序为从左到右,并将节点依次编号,那么分层变量如图的二叉树:输出应为:

输出:

1
2 3
4 5 6
7 8

问题2:写另外一个函数,打印二叉树中某层次的节点(从左到右),其中根节点为第0层,函数原型为
int printNodeAtLevel(Node* root,int level),成功返回0,失败返回0.

仔细看2个问题,我们发现解决了第二个问题,第一个问题也迎刃而解
要想打印第k层,我们只需要打印k-1层的孩子即可。依此递减。

typedef struct Node{
    Node* left;
    Node* right;
    char data;
    Node(char c)
    {
        data=c;
        left=NULL;//很重要
        right=NULL;
    }
    ~Node()
    {
        delete left;//如果left为null,也没问题,delete兼容null
        delete right;
    }
}*BiTree;
typedef  char ElemType;
void createBiTree(BiTree& T)
{
    ElemType elem;
    cin>>elem;

    if(elem!='#')
    {
        T=new Node(elem);

        createBiTree(T->left);
        createBiTree(T->right);
    }
    else
        T=NULL;


}


 
//输出以root为根节点的第level(从0开始)的所有节点,从左到右 
int printNodeAtLevel(Node * root,int level)
{
    if(!root)
        return 0;
    if(level==0)
    {
        cout<<root->data<<ends;
        return 1;
    }
    return printNodeAtLevel(root->left,level-1)+printNodeAtLevel(root->right,level-1);
}

int main()
{
    BiTree T;
    createBiTree(T);

    cout<<printNodeAtLevel(T,2);//输出3
    cout<<printNodeAtLevel(T,1);//输出2
    
}
输入:124##57##8##3#6##
上面的是个二路递归,递归效率较低

如果改成:

if(level<0) return 0;
if(level==0)

运行有问题。


解决了问题2,如何解决问题1?
如果我们知道了二叉树深度为n,只需n次调用printNodeAtLevel就可以了。
void printNodeByLevle(Node* root,int depth)
{
for(int level=0;level<depth;level++)
{
printNodeAtLevel(root,level);
cout<<endl;
}
}

如何事先不知道,当访问二叉树某一层次失败的时候返回就可以了。如下:
void printNodeByLevle(Node* root)
{
for(int level=0; ;level++)
{
if(!printNodeAtLevel(root,level)
   break;
cout<<endl;
}
}
至此我们解决了题目中的两个问题,但细心的读者可能会发现,其实在问题1的算法中,对二叉树的每一层访问都需要重新从根节点开始,直到访问完所有的层次。这样的做法,效率实在不高,那么有没有更好的算法呢?

从根节点出发,依次将每层的节点从左到右压入一个数组,并用一个游标Cur记录当前访问的节点,另一个游标Last指示当前层次的最后一个节点的下一个位置,以Cur==Last作为当前层次访问结束的条件,在访问某一层的同时将该层的所有节点的子节点压入数组,在访问完某一层之后,检查是否还有新的层次可以访问,直到访问完所有的层次.

首先将根节点1压入数组,并将游标cur置为0,数组下标从0开始,游标Last置为1.
cur<last,说明此层(第一层)尚未被访问,隐藏,依次访问Cur到Last之间的所有节点。知道Cur==Last,说明该层以及访问完,此时数组中还有未被访问到的节点,则输出换行符,并将Last定位于新一行的末尾(即数组当前最后一个元素的下一位)。
继续依次往下访问其他层次的节点,直到访问完所有的层次。
void printNodeByLevel2(Node* root)
{
    if(root==NULL) return ;
    vector<Node*> vec;//这里是有STL的vector代替数组,可利用其动态扩展
    vec.push_back(root);
    int cur=0;
    int last=1;
    while(cur<vec.size())
    {
        last=vec.size();//新的一行访问开始,重新定位last与当前行最后一个节点的下一个位置
        while(cur<last)
        {
            cout<<vec[cur]->data<<" ";
            if(vec[cur]->left)
                vec.push_back(vec[cur]->left);
            if(vec[cur]->right)
                vec.push_back(vec[cur]->right);

            cur++;
        }
        cout<<endl;//当cur==last,说明该层访问结束
    }
}

广度优先搜索

书中没有提及,本问题其实是以广度优先搜索(breath-first search, BFS)去遍历一个树结构。广度优先搜索的典型实现是使用队列(queue)。其伪代码如下:

enqueue(Q, root)

do
    node = dequeue(Q)
    process(node) //如把内容列印
    for each child of node
        enqueue(Q, child)
while Q is not empty

书上的解法,事实上也使用了一个队列。但本人认为,使用vector容器,较不直觉,而且其空间复杂度是O(n)。

如果用队列去实现BFS,不处理换行,能简单翻译伪代码为C++代码:

void PrintBFS(Node* root) {
    queue<Node*> Q;
    Q.push(root);
    do {
        Node *node = Q.front();
        Q.pop();
        cout << node->data << " ";
        if (node->pLeft)
            Q.push(node->pLeft);
        if (node->pRight)
            Q.push(node->pRight);
    }
    while (!Q.empty());
}

本人觉得这样的算法实现可能比较清楚,而且空间复杂度只需O(m),m为树中最多节点的层的节点数量。最坏的情况是当二叉树为完整,m = n/2。

 

之后的难点在于如何换行。

第一个尝试,利用了两个队列,一个储存本层的节点,另一个储存下层的节点。遍历本层的节点,把其子代节点排入下层队列。本层遍历完毕后,就可换行,并交换两个队列。

void PrintNodeByLevel(Node* root) {
    deque<Node*> Q1, Q2;
    Q1.push_back(root);
    do {
        do {
            Node* node = Q1.front();
            Q1.pop_front();
            cout << node->data << " ";
            if (node->pLeft)
                Q2.push_back(node->pLeft);
            if (node->pRight)
                Q2.push_back(node->pRight);
        } while (!Q1.empty());
        cout << endl;
        Q1.swap(Q2); 
    } while(!Q1.empty());
}
View Code

本实现使用deque而不是queue,因为deque才支持swap()操作。注意,swap()是O(1)的操作,实际上只是交换指针。

这实现要用两个循环(书上的实现也是),并且用了两个队列。能够只用一个循环、一个队列么?

本人的尝试之二

换行问题其实在于如何表达一层的结束。书上采用了游标,而第一个尝试则用了两个队列。本人想到第三个可行方案,是把一个结束信号放进队列里。由于使用queue<Node*>,可以插入一个空指针去表示一层的遍历结束。

void printNodeByLevel3(Node* root)
{
    queue<Node*> q;
    q.push(root);
    q.push(0);
    do{
        Node* node=q.front(); q.pop();
        if(node)
        {
            cout<<node->data<<" ";
            if(node->left)
                q.push(node->left);
            if(node->right)
                q.push(node->right);
        }
        else if(!q.empty()) //一定要是else if
        {
            q.push(0);
            cout<<endl;
        }
    }while(!q.empty());
}

上面的代码很巧妙,当node为0时,该层已经结束。但是有个问题,要检测是否还有节点。

void PrintNodeByLevel(Node *root)
{
    int last;
    Node *p;

    if(!root)    return ;

    InitQueue();
    EnQueue(root);
    EnQueue(NULL);
    while(front < rear - 1)
    {
        last = rear - 1;
        while(front < last)
        {
            p = DeQueue();
            if(p->lChild)    EnQueue(p->lChild);
            if(p->rChild)    EnQueue(p->rChild);
        }
        EnQueue(NULL);
        front = last + 1;
    }
}

 

这个实现的代码很贴近之前的PrintBFS(),也只有一个循环。注意一点,当发现空指针(结束信号)时,要检查队列内是否还有节点,如果没有的话还插入新的结束信号,则会做成死循环。

参考:

http://www.cnblogs.com/miloyip/archive/2010/05/12/binary_tree_traversal.html

扩展问题:如果要求按深度从下到上访问二叉树,每层的访问顺序仍然是从左向右,如果从右向左呢?

还有一种方法:

分析:要换行则需要知道什么时候换行,由二叉树我们可以分析,我们需要知道每一层最右边的节点,每次打印完这个节点的值后,再打印一个换行即可。于是我们这样做:

 

定义两个变量,last 和 nlast

last : 表示正在打印的当前行的最右节点

nlast : 表示下一行的最右节点

  1. 开始让 last 等于二叉树的根节点,并将其点放入队列中。

  2. 队头节点出队列,并打印,将该节点的左孩子入队,并让 nlast 等于该节点,将该节点的右孩子入队,并让 nlast 等于该节点。

  3. 如果打印的节点等于 last 当前指向的节点,则打印一次换行,同时让 last 等于 nlast。

  4. 重复步骤2,3,知道队列为空为止

 

void printNodeBfs_otherWay(Node* t) {
    queue<Node*> q;
    Node* last; //表示当前遍历层最右结点
    Node* nlast;//表示下一层最右结点

    q.push(t);
    last = nlast = t;

    while (!q.empty()) {
        Node* curr = q.front(); q.pop();
        Node* left = curr->left;
        Node* right = curr->right;

        cout <<curr->data << " ";

        if (left) {
            q.push(left);
            nlast = left;
        }
        if (right) {
            q.push(right);
            nlast = right;
        }

        //如果当前输出结点是最右结点
        if (curr == last) {
            cout << endl;//新的一层换行
            last = nlast;
        }


    }


}

 



依然是按层遍历二叉树,只是要求从下往上访问,并且每一层中结点的访问顺序为从右向左

分析:只要层与层之间加入哑元素(NULL),然后逆序输出队列Q即可

第一步:给每一层之间添加哑元素NULL

复制代码
void PrintNodeByLevel(Node *root)
{
int last;
Node *p;

if(!root) return ;

InitQueue();
EnQueue(root);
EnQueue(NULL);
while(front < rear - 1)
{
last = rear - 1;
while(front < last)
{
p = DeQueue();
if(p->lChild) EnQueue(p->lChild);
if(p->rChild) EnQueue(p->rChild);
}
EnQueue(NULL);
front = last + 1;
}
}
复制代码

第二步:逆序输出队列Q

复制代码
for(int i = rear - 2 ; i >= 0 ; i--)
{
if(Q[i] == NULL)
printf("\n");
else
printf("%c", Q[i]->chValue);
}
复制代码

 

百度一道面试题

输出二叉树第 m 层的第 k 个节点值(m, k 均从 0 开始计数)

先看百度笔试的这道原题

2.给定以下二叉树:
struct node_t
{
   node_t *left, *right;
   int value;
};
要求编写函数 node_t* foo(node_t *node, unsigned int m, unsigned int k);
输出以 node 为根的二叉树第 m 层的第 k 个节点值.
(level, k 均从 0 开始计数)
注意:
1)  此树不是完全二叉树;
2)  所谓的第K个节点,是本层中从左到右的第K个节点

不合要求的做法:递归,利用||从左往右的计算顺序以及其真值关系

int printMK(Node* root,int m,int k,int *cnt)
{
    if(!root || m<0)
        return 0;
    if(m==0)
    {
        if(*cnt==k)
        {
            cout<<root->data<<endl;
            return 1;
        }
        *cnt+=1;
        return 0;
    }
    return printMK(root->left,m-1,k,cnt) || printMK(root->right,m-1,k,cnt);
}

int *cnt=new int(0);
printMK(T,2,1,cnt);

解法:

void printMK2(BiTree T,int m,int k)
{
    int num=0;
     int level=0;
    queue<Node*> q;
    q.push(T);
    q.push(0);
    do{
        Node* node=q.front(); q.pop();
        
        if(node)
        {
            num++; 
            if(level==m&& num-1==k) { cout<<node->data<<" "; break;}
            if(node->left)
                q.push(node->left);
            if(node->right)
                q.push(node->right);
        }
        else if(!q.empty())
        {
            level++;
            num=0;
            q.push(0);
            cout<<endl;
        }
    }while(!q.empty());
}

参考:http://www.cppblog.com/flyinghearts/archive/2010/08/16/123548.html

关于这个题目leetcode有一题很相似,解法更好:
LeetCode Problem: Populating Next Right Pointers in Each Node, Level traversal of binary tree
http://blog.unieagle.net/2012/12/24/leetcode-problem-populating-next-right-pointers-in-each-node-level-traversal-of-binary-tree/