机器学习 实验三
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | # 导入必要的库 import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, cross_val_score, cross_validate from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix import seaborn as sns # (1)加载iris数据集,并留出1/3的样本作为测试集 iris = load_iris() X = iris.data y = iris.target # 使用留出法,留出1/3的样本作为测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=42, stratify=y) # (2)使用训练集训练分类带有预剪枝和后剪枝的决策树模型 # 预剪枝可以通过设置max_depth参数来实现 # 后剪枝可以通过设置min_samples_split和min_samples_leaf参数来实现 clf_pre_pruning = DecisionTreeClassifier(max_depth=3, random_state=42) clf_pre_pruning.fit(X_train, y_train) # (3)使用五折交叉验证对模型性能进行评估和选择 scores = cross_validate(clf_pre_pruning, X_train, y_train, cv=5, scoring=[ 'accuracy' , 'precision_macro' , 'recall_macro' , 'f1_macro' ]) # 打印交叉验证结果 print( "五折交叉验证结果:" ) print(f "准确度:{scores['test_accuracy'].mean():.4f} ± {scores['test_accuracy'].std():.4f}" ) print(f "精度:{scores['test_precision_macro'].mean():.4f} ± {scores['test_precision_macro'].std():.4f}" ) print(f "召回率:{scores['test_recall_macro'].mean():.4f} ± {scores['test_recall_macro'].std():.4f}" ) print(f "F1值:{scores['test_f1_macro'].mean():.4f} ± {scores['test_f1_macro'].std():.4f}" ) # (4)使用测试集测试模型的性能 y_pred = clf_pre_pruning.predict(X_test) # 计算测试集的性能指标 accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred, average= 'macro' ) recall = recall_score(y_test, y_pred, average= 'macro' ) f1 = f1_score(y_test, y_pred, average= 'macro' ) # 打印测试集的性能指标 print( "测试集性能指标:" ) print(f "准确度:{accuracy:.4f}" ) print(f "精度:{precision:.4f}" ) print(f "召回率:{recall:.4f}" ) print(f "F1值:{f1:.4f}" ) # 绘制混淆矩阵 cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot=True, fmt= 'd' , cmap= 'Blues' , xticklabels=iris.target_names, yticklabels=iris.target_names) plt.xlabel( 'Predicted' ) plt.ylabel( 'True' ) plt.show() |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix