机器学习 作业一
数据集信息
1.
数据集名称 |
Rice (Cammeo and Osmancik) |
|||||
来源 |
Rice (Cammeo and Osmancik) - UCI Machine Learning Repository |
|||||
数据集描述 |
A total of 3810 rice grain's images were taken for the two species, processed and feature inferences were made. 7 morphological features were obtained for each grain of rice. |
|||||
样本数(大小) |
3810 |
属性个数 |
7 |
属性值取值范围 |
Area Perimeter Major_Axis_Length Minor_Axis_Length Eccentricity Convex_Area Extent Class
|
|
标签数量 |
2 |
标签值\取值范围 |
Cammeo, Osmancik |
|||
样本举例 |
14634,501.1669921875,214.10678100585938,87.76876831054688,0.9121180725097656,14954,0.6392587890625,Cammeo 13176,458.34298706054688,199.333740234375,87.44833374023438,0.8768310546875,13168,0.6640625,Osmancik 15231,526.578799421875,229.7498779296875,85.09375,1469792726,0.9288800200830078,15617,0.5728955526855469,Cammeo 4656,494.3110046386719,206.0200653076172,91.73097722900391,0.8954049448760986,15072,0.615436315335489, Cammeo |
|||||
面向任务 |
分类 |
2.
数据集名称 |
Iris
|
|||||
来源 |
||||||
数据集描述 |
A small classic dataset from Fisher, 1936. One of the earliest known datasets used for evaluating classification methods. |
|||||
样本数(大小) |
150 |
属性个数 |
4 |
属性值取值范围 |
sepal length sepal width petal length petal width
|
|
标签数量 |
3 |
标签值\取值范围 |
Iris Setosa,Iris Versicolour,Iris Virginica |
|||
样本举例 |
5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.4,3.7,1.5,0.2,Iris-setosa
|
|||||
面向任务 |
分类 |
3.
数据集名称 |
Raisin
|
|||||
来源 |
||||||
数据集描述 |
Images of the Kecimen and Besni raisin varieties were obtained with CVS. A total of 900 raisins were used, including 450 from both varieties, and 7 morphological features were extracted. |
|||||
样本数(大小) |
900 |
属性个数 |
7 |
属性值取值范围 |
实数、整数 |
|
标签数量 |
2 |
标签值\取值范围 |
Kecimen 葡萄干、Besni 葡萄干 |
|||
样本举例 |
45928 286.5405586 208.7600423 0.684989217 47336 0.699599385 844.162 Kecimen 79408 352.1907699 290.8275329 0.56401133 81463 0.792771926 1073.251 Kecimen 49242 318.125407 200.12212 0.777351277 51368 0.658456354 881.836 Kecimen 42492 310.1460715 176.1314494 0.823098681 43904 0.665893562 823.796 Kecimen 60952 332.4554716 235.429835 0.706057518 62329 0.74359819 933.366 Kecimen 42256 323.1896072 172.5759261 0.845498789 44743 0.698030924 849.728 Kecimen 64380 366.9648423 227.7716147 0.784055626 66125 0.664375716 981.544 Kecimen 80437 449.4545811 232.3255064 0.856042518 84460 0.674235757 1176.305 Kecimen 43725 301.3222176 186.9506295 0.784258452 45021 0.697068248 818.873 Kecimen
|
|||||
面向任务 |
分类 |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
2023-09-18 课堂测试