AVRank, HVRank的实现
看了论文《Deeply Exploiting Link Structure: Setting a Tougher Life for Spammers》,用Java和webgraph库实现了一下其中的算法CPV,即计算AVRank和HVRank。最终的结果没有做归一化处理,我用数据集试了一下,发现效果还不错。
代码实现如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | package cn.edu.dlut.wisdom; import it.unimi.dsi.webgraph.*; public class Cpv { private ImmutableGraph graph; private ImmutableGraph igraph; private double alpha = 0.5 ; private double beta = 0.5 ; private double dampening = 0.85 ; private int numNodes; private int m = 50 ; public void setM( int m) { this .m = m; } public void setAlpha( double alpha) { this .alpha = alpha; } public void setBeta( double beta) { this .beta = beta; } public void setDampening( double dampening) { this .dampening = dampening; } public void setGraph(ImmutableGraph graph) { this .graph = graph; } public void setIAVRank( double [] iAVRank) { this .iAVRank = iAVRank; } public void setIgraph(ImmutableGraph igraph) { this .igraph = igraph; } public void setIHVRank( double [] iHVRank) { this .iHVRank = iHVRank; } private double [] iAVRank; private double [] iHVRank; private double [] aVRank; private double [] hVRank; public double [] getAVRank() { return aVRank; } public double [] getHvRank() { return hVRank; } public Cpv(ImmutableGraph graph, ImmutableGraph igraph, double [] iAVRank, double [] iHVRank, double alpha, double beta, double dampening, int m) { this .iAVRank = iAVRank; this .iHVRank = iHVRank; this .alpha = alpha; this .beta = beta; this .dampening = dampening; this .m = m; this .graph = graph; this .igraph = igraph; numNodes = graph.numNodes(); } public Cpv(ImmutableGraph graph, ImmutableGraph igraph) { this .graph = graph; this .igraph = igraph; numNodes = graph.numNodes(); iAVRank = new double [numNodes]; iHVRank = new double [numNodes]; double temp = 1.0 / numNodes; for ( int i = 0 ; i < numNodes; i++) { iAVRank[i] = temp; iHVRank[i] = temp; } } public Cpv(ImmutableGraph graph) { this .graph = graph; igraph = Transform.transpose(graph); numNodes = graph.numNodes(); iAVRank = new double [numNodes]; iHVRank = new double [numNodes]; double temp = 1.0 / numNodes; for ( int i = 0 ; i < numNodes; i++) { iAVRank[i] = temp; iHVRank[i] = temp; } } public void computeRank() { // 初始化 aVRank = iAVRank.clone(); hVRank = iHVRank.clone(); int iter = m; // 迭代 while (iter-- > 0 ) { for ( int i = 0 ; i < numNodes; i++) { if (igraph.outdegree(i) > 0 ) { aVRank[i] = 0 ; for ( int j : igraph.successorArray(i)) { int outDegree = graph.outdegree(j); aVRank[i] += alpha * aVRank[j] / outDegree + ( 1 - alpha) * hVRank[j] / outDegree; } } } for ( int i = 0 ; i < numNodes; i++) { if (graph.outdegree(i) > 0 ) { hVRank[i] = 0 ; for ( int j : graph.successorArray(i)) { int inDegree = igraph.outdegree(j); hVRank[i] += beta * aVRank[j] / inDegree + ( 1 - beta) * hVRank[j] / inDegree; } } } for ( int i = 0 ; i < numNodes; i++) { aVRank[i] = dampening * aVRank[i] + ( 1 - dampening) * iAVRank[i]; hVRank[i] = dampening * hVRank[i] + ( 1 - dampening) * hVRank[i]; } } } } |

本文基于署名 2.5 中国大陆许可协议发布,欢迎转载,演绎或用于商业目的,但是必须保留本文的署名小橋流水(包含链接)。如您有任何疑问或者授权方面的协商,请给我发邮件。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· [AI/GPT/综述] AI Agent的设计模式综述