BZOJ 3282: Tree
3282: Tree
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1714 Solved: 765
[Submit][Status][Discuss]
Description
给定N个点以及每个点的权值,要你处理接下来的M个操作。操作有4种。操作从0到3编号。点从1到N编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点X上的权值变成Y。
Input
第1行两个整数,分别为N和M,代表点数和操作数。
第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。
Output
对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。
Sample Input
3 3
1
2
3
1 1 2
0 1 2
0 1 1
1
2
3
1 1 2
0 1 2
0 1 1
Sample Output
3
1
1
HINT
1<=N,M<=300000
Source
莫名其妙的红色,LCT模板题
#include <bits/stdc++.h> inline int nextChar(void) { static const int siz = 1 << 20; static char buffer[siz]; static char *head = buffer + siz; static char *tail = buffer + siz; if (head == tail)fread(head = buffer, 1, siz, stdin); return int(*head++); } inline int nextInt(void) { register int ret = 0; register int neg = false; register int bit = nextChar(); for (; bit < 48; bit = nextChar()) if (bit == '-')neg ^= true; for (; bit > 47; bit = nextChar()) ret = ret * 10 + bit - '0'; return neg ? -ret : ret; } const int mxn = 300005; int n, m, top; int stk[mxn]; int val[mxn]; int sum[mxn]; int fat[mxn]; int rev[mxn]; int son[mxn][2]; inline bool isroot(int t) { int f = fat[t]; if (!f)return true; if (son[f][0] == t)return false; if (son[f][1] == t)return false; return true; } inline void update(int t) { sum[t] = val[t]; if (son[t][0])sum[t] ^= sum[son[t][0]]; if (son[t][1])sum[t] ^= sum[son[t][1]]; } inline void push(int t) { rev[t] = 0; std::swap(son[t][0], son[t][1]); if (son[t][0])rev[son[t][0]] ^= 1; if (son[t][1])rev[son[t][1]] ^= 1; } inline void pushdown(int t) { for (stk[++top] = t; t; ) stk[++top] = t = fat[t]; for (; top; --top) if (rev[stk[top]]) push(stk[top]); } inline void connect(int t, int f, int k) { if (t)fat[t] = f; if (f)son[f][k] = t; } inline void rotate(int t) { int f = fat[t]; int g = fat[f]; int s = son[f][1] == t; connect(son[t][!s], f, s); connect(f, t, !s); fat[t] = g; if (g && son[g][0] == f)son[g][0] = t; if (g && son[g][1] == f)son[g][1] = t; update(f); update(t); } inline void splay(int t) { pushdown(t); while (!isroot(t)) { int f = fat[t]; int g = fat[f]; if (isroot(f)) rotate(t); else { int a = f && son[f][1] == t; int b = g && son[g][1] == f; if (a == b) rotate(f), rotate(t); else rotate(t), rotate(t); } } } inline void access(int t) { for (int p = 0; t; p = t, t = fat[t]) splay(t), son[t][1] = p, update(t); } inline void makeroot(int t) { access(t), splay(t), rev[t] ^= 1; } inline void cut(int a, int b) { makeroot(a), access(b), splay(b); if (son[b][0] == a)son[b][0] = fat[a] = 0; } inline void link(int t, int f) { makeroot(t), fat[t] = f; } inline int find(int t) { access(t), splay(t); while (son[t][0]) t = son[t][0]; return t; } signed main(void) { n = nextInt(); m = nextInt(); for (int i = 1; i <= n; ++i) val[i] = sum[i] = nextInt(); for (int i = 1; i <= m; ++i) { int k = nextInt(); int x = nextInt(); int y = nextInt(); switch (k) { case 0 : makeroot(x); access(y); splay(y); printf("%d\n", sum[y]); break; case 1: if (find(x) != find(y)) link(x, y); break; case 2: if (find(x) == find(y)) cut(x, y); break; case 3: access(x); splay(x); val[x] = y; update(x); break; } } }
@Author: YouSiki