BZOJ 4385: [POI2015]Wilcze doły
4385: [POI2015]Wilcze doły
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 648 Solved: 263
[Submit][Status][Discuss]
Description
给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0。
请找到最长的一段连续区间,使得该区间内所有数字之和不超过p。
Input
第一行包含三个整数n,p,d(1<=d<=n<=2000000,0<=p<=10^16)。
第二行包含n个正整数,依次表示序列中每个数w[i](1<=w[i]<=10^9)。
Output
包含一行一个正整数,即修改后能找到的最长的符合条件的区间的长度。
Sample Input
9 7 2
3 4 1 9 4 1 7 1 3
3 4 1 9 4 1 7 1 3
Sample Output
5
HINT
将第4个和第5个数修改为0,然后可以选出区间[2,6],总和为4+1+0+0+1=6。
Source
分析
显然单调队列O(N)扫过去即可,就是注意优化常数。
代码
1 #include <cstdio> 2 #include <cstdlib> 3 #include <cstring> 4 #include <iostream> 5 #include <algorithm> 6 7 using namespace std; 8 9 #define gc getchar 10 #define add(x,y) x=x*10+y-'0' 11 12 template <class T> 13 __inline void read(T &x) 14 { 15 x = 0; char c = gc(); 16 17 while (c < '0') 18 c = gc(); 19 20 while (c >= '0')add(x,c), 21 c = gc(); 22 } 23 24 #define mem(x) memset(x,0,sizeof(x)) 25 #define rep(x) for(int i=1;i<=x;++i) 26 27 #define ll long long 28 #define LL long long 29 30 #define N 4000005 31 32 int n; 33 int d; 34 int num[N]; 35 int que[N]; 36 37 LL p; 38 LL sum[N]; 39 LL mex[N]; 40 41 signed main(void) 42 { 43 read(n); 44 read(p); 45 read(d); 46 47 rep(n)read(num[i]); 48 rep(n)sum[i] = sum[i - 1] + num[i]; 49 rep(n - d + 1)mex[i] = sum[i + d - 1] - sum[i - 1]; 50 51 int h = 0, t = 0, lt = 0, ans = 0; 52 53 for (int i = d; i <= n; ++i) 54 { 55 while (h < t && mex[que[t - 1]] <= mex[i - d + 1]) 56 --t; 57 58 que[t++] = i - d + 1; 59 60 while (sum[i] - sum[lt] - mex[que[h]] > p) 61 { 62 ++lt; while (que[h] <= lt)++h; 63 } 64 65 if (i - lt > ans)ans = i - lt; 66 } 67 68 printf("%d\n", ans); 69 }
1 #include <bits/stdc++.h> 2 3 typedef long long longint; 4 5 const int maxn = 4000005; 6 7 int n; 8 int d; 9 int num[maxn]; 10 int que[maxn]; 11 12 longint p; 13 longint sum[maxn]; 14 longint mex[maxn]; 15 16 signed main(void) 17 { 18 scanf("%d%lld%d", &n, &p, &d); 19 20 for (int i = 1; i <= n; ++i) 21 scanf("%d", num + i); 22 23 for (int i = 1; i <= n; ++i) 24 sum[i] = sum[i - 1] + num[i]; 25 26 for (int i = 1; i <= n - d + 1; ++i) 27 mex[i] = sum[i + d - 1] - sum[i - 1]; 28 29 int head = 0, tail = 0, left = 0, answer = 0; 30 31 for (int i = d; i <= n; ++i) { 32 while (head < tail && mex[que[tail - 1]] <= mex[i - d + 1]) 33 --tail; // queue pop back 34 35 que[tail++] = i - d + 1; 36 37 while (sum[i] - sum[left] - mex[que[head]] > p) { 38 ++left; 39 while (que[head] <= left) 40 ++head; // queue pop front 41 } 42 43 if (answer < i - left) 44 answer = i - left; 45 } 46 47 printf("%d\n", answer); 48 }
@Author: YouSiki