图解Transformer
图解Transformer
前言
Attention这种机制最开始应用于机器翻译的任务中,并且取得了巨大的成就,因而在最近的深度学习模型中受到了大量的关注。在在这个基础上,我们提出一种完全基于Attention机制来加速深度学习训练过程的算法模型-Transformer。事实证明Transformer结构在特定任务上已经优于了谷歌的神经网络机器翻译模型。但是,Transformer最大的优势在于其在并行化处理上做出的贡献。谷歌也在利用Transformer的并行化方式来营销自己的云TPU。所以,现在让我们一步一步剖析Transformer的神秘面纱,让我看看他是怎么一步一步训练的。
Transformer在Goole的一篇论文Attention is All You Need被提出,为了方便实现调用Transformer Google还开源了一个第三方库,基于TensorFlow的Tensor2Tensor,一个NLP的社区研究者贡献了一个Torch版本的支持:guide annotating the paper with PyTorch implementation。这里,我想用一些方便理解的方式来一步一步解释Transformer的训练过程,这样即便你没有很深的深度学习知识你也能大概明白其中的原理。
查看全文:https://blog.csdn.net/qq_41664845/article/details/84969266
分类:
NLP
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!